

Component Models and Systems
for Grid Applications

Component Models
and Systems for
Grid Applications
Proceedings of the Workshop on Component Models and
Systems for Grid Applications held June 26, 2004 in Saint Malo,
France.

Edited by

Vladimir Getov
University of Westminster
London, United Kingdom

Thilo Kielmann
Vrije Universiteit
Amsterdam, The Netherlands

Springer

eBook ISBN: 0-387-23352-0
Print ISBN: 0-387-23351-2

Print ©2005 Springer Science + Business Media, Inc.

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Boston

©2005 Springer Science + Business Media, Inc.

Visit Springer's eBookstore at: http://ebooks.springerlink.com
and the Springer Global Website Online at: http://www.springeronline.com

Contents

Foreword

Preface

Contributing Authors

Part I Application-Oriented Designs

Building Applications from a Web Service based Component Architecture
Dennis Gannon, Sriram Krishnan, Alexander Slominski, Gopi Kandaswamy, and
Liang Fang

Components for High-Performance Grid Programming in Grid.it
Marco Aldinucci, Sonia Campa, Massimo Coppola, Marco Danelutto,
Domenico Laforenza, Diego Puppin, Luca Scarponi, Marco Vanneschi, and
Corrado Zoccolo

Towards Building a Generic Grid Services Platform: A Component-Oriented
Approach

Jeyarajan Thiyagalingam, Stavros Isaiadis, and Vladimir Getov

A Solution for Adapting Legacy Code as Web Services
Marian Bubak, and Michal Wegiel

Part II Middleware Architecture

A Graphical Modeling Environment for the Generation of Workflows for the
Globus Toolkit

Francisco Hernández, Purushotham Bangalore, Jeff Gray, and Kevin Reilly

On Hierarchical, Parallel, and Distributed Components for Grid Programming
Françoise Baude, Denis Caromel, and Matthieu Morel

ICENI: An Integrated Grid Middleware to Support e-Science
Anthony Mayer, Steve McGough, Nathalie Furmento, Jeremy Cohen, Murtaza
Gulamali, Laurie Young, Ali Afzal, Steven Newhouse, and John Darlington

An Architecture for a Portable Grid-enabled Engine
Bruce Long and Vladimir Getov

vii

ix

xiii

3

19

39

57

79

97

109

125

vi COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Part III Communication Frameworks

Dynamic Adaptation of Parallel Codes: Toward Self-Adaptable Components
for the Grid

Françoise André, Jérémy Buisson, and Jean-Louis Pazat

HOCs: Higher-Order Components for Grids
Martin Alt, Jan Dünnweber, Jens Müller, and Sergei Gorlatch

The Component Architecture of Open MPI: Enabling Third-Party Collective
Algorithms

Jeffrey M. Squyres and Andrew Lumsdaine

Index

145

157

167

187

Foreword

Grid computing emerged in the mid-nineties as a new high-performance com-
puting paradigm for scientific and engineering applications. At this early stage,
Grids focused mainly on metacomputing – sharing computing resources over
the Internet. The current architectural extensions to the Grid concept are still not
sufficient to meet the broader requirements, such as those derived from business
or heavy-duty scientific needs. These requirements include scalability, robust-
ness, dynamic reconfigurability, self-healing, high integrity, business-strength
security and trust, low-effort-threshold end-user interfaces, homogeneous and
transparent access to both heterogeneous data and processing resources.

Therefore, research and development in the area of Grid technologies is a key
strategic objective, not only for the scientific community, but also for society
as a whole. Hence, it has been given high priority and attention by a number of
funding bodies and agencies world-wide. The European “Information Society
Technologies” (IST) research and development programme1 in particular has
been giving high priority to Grid-related research for several years now with a
large number of recent and currently active projects. Amongst them, CoreGRID
aims at strengthening and advancing long-term research, knowledge transfer
and integration in the area of Grid and Peer-to-Peer technologies. It is a net-
work of excellence – a new instrument within the 6th Framework Programme
– to ensure progressive evolution and durable integration of the European Grid
research community. In order to achieve this objective, CoreGRID brings to-
gether a critical mass of well-established researchers and doctoral students
from forty-two institutions who have developed an ambitious joint programme
of activities. This programme is structured around six complementary research
areas that have been selected on the basis of their strategic importance, research
challenges, and recognised European expertise to develop next generation Grid
middleware, namely: knowledge and data management; programming models;
system architecture; information and monitoring services; resource manage-
ment and scheduling; Grid systems, tools and problem solving environments.

1http://www.cordis.lu/ist/home.html

viii COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Besides other activities, the CoreGRID working plan envisages the organisa-
tion of a number of international peer-reviewed workshops and conferences in
this exciting and rapidly developing area. The present proceedings are the first
volume of a series of publications that will be edited by CoreGRID researchers.
They reflect the preparation of the CoreGRID proposal, which evolved out of
several working meetings. These meetings fostered relationships between the
forty-two partners and were the occasion to identify a number of important
research issues related to future Grid systems. Vladimir Getov and Thilo Kiel-
mann, the editors of this volume, took a pro-active role in this process and also
co-chaired the Workshop on Component Models and Systems for Grid Appli-
cations, as part of the ACM ICS 2004 conference. This is a research field of
growing importance addressing the problem of simplifying the inherent com-
plexity of both Grid middleware and Grid applications. The workshop outlined
some of the most interesting research topics covered during the preparation
phase of the project. It is, therefore, not surprising that the first volume of the
CoreGRID series of proceedings is a good selection of high-quality articles,
which marks not only the start of the series but also the start of the CoreGRID
project itself. On behalf of all CoreGRID partners, I would like to express my
gratitude to the editors and to all contributors.

Thierry Priol, CoreGRID Scientific Co-ordinator

Preface

Grids are modern computer systems that enable access to and the sharing of
geographically distributed heterogeneous resources, such as computers, knowl-
edge, sensors, and instruments for solving large-scale and complex problems
in science and commerce. Through virtualisation of these resources, Grids will
become much easier to program and to use. The present capabilities of Grids
are being largely demonstrated through a variety of representative e-science ap-
plications, but the ultimate commercial benefits will come from their potential
to revolutionise tomorrow’s Internet. Further research results and the promo-
tion of early adoption by industry are crucial to move Grids from their current,
pioneering stage in science to widespread use in both business and industry.

It is believed that the long-term evolution of Grids depends on the develop-
ment and the significant advances in three different but complementary areas
which are vital for building next generation Grids1:

Architecture – this area envisions the Grid as a structural entity with a
collection of capabilities and properties, which are critical in providing
an indication of the scale expected from future Grids in terms of numbers,
geography, and administrative domains.

Software – this area focuses on how Grid programming will look, which
algorithmic problems have to be solved and which constraints have to
be observed in order to build an infrastructure as described by the Grid
architecture.

Applications – this area develops a vision of how the Grid could be de-
ployed in the everyday life of individuals, businesses, and organisations.

Reflecting this new reality, the Workshop on Component Models and Sys-
tems for Grid Applications2, organized by members of the EU CoreGRID
project3, was established to bring together researchers working in this field.

1ftp://ftp.cordis.lu/pub/ist/docs/ngg_eg_final.pdf
2http://www.cs.vu.nl/CMSGA/
3http://www.coregrid.org

x COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

The programming of Grid applications is highly complex due to the scale, het-
erogeneity, and dynamicity of Grid infrastructures. Whereas Grid middleware
has made considerable progress recently, Grid application programs are still
being developed mostly without support from advanced programming models
and environments. Therefore, the development of component models and their
integration into component architectures and systems has been recognised as a
topic of high priority in order to fill this gap. The goal of the workshop was to
bring together researchers in this exciting field of growing importance. Indeed,
attendees with expertise in a variety of topics arrived in Saint Malo at the end
of June 2004 to discuss the state-of-the-art and the future of this field. The
topics covered by the workshop were grouped into four sessions starting with
a key-note talk by Dennis Gannon.

The presentations during the workshop created an inspiring environment
for the final panel discussion, entitled Objects, Components, Services, and
Peers: Can we handle all of them in one global system? and moderated by
Domenico Laforenza from the Italian National Research Council. After his
thought-provoking introduction, the panelists (Dennis Gannon, Thierry Priol,
Vladimir Getov, and Marco Danelutto) contributed their points of view. A
lively discussion spun off as a result of their short presentations addressing the
following main open questions and issues:

How can we integrate the currently independent communities that are
dealing with Grid computing, peer-to-peer systems, networks, and coor-
dination models?

WSRF is recognized as rather low level, WSDL is human-readable, but
not understandable. What is the right level of abstraction for Grid com-
ponents and services?

What will be the “killer application” of Grids? Will it be the seamless
computing, as envisaged by the power grid analogy?

How can the Grid be made as simple to use as the Web? Will the simple
user interface finally attract the “killer application”?

Of course, a panel discussion can only identify such questions; giving the
right answers will be the task of ongoing research. However, the work presented
at the workshop and collected in this book provides an excellent starting point
to tackle these issues.

We have organized this book in three parts. Part I is devoted to Application-
Oriented Designs including contributions on the development methodology
for building component-based Grid applications. Part II explores the Middle-
ware Architecture area with chapters emphasizing hierarchical infrastructures,
workflow modelling environments, interoperability, and portable Grid engines.

PREFACE xi

Finally, Part III deals with Communication Frameworks addressing dynamic
self-adaptation, higher-order components, and collective operations.

Finally, we would like to thank all the participants for their contributions to
making the workshop a resounding success; the organisers of the 18th Annual
ACM International Conference on Supercomputing for their professional sup-
port in the organization; the workshop program committee for reviewing the
submissions; and, last but not least, all the authors that contributed articles for
publication in this volume.

Our thanks also go to the European Commission for sponsoring under grant
number 004265 this first volume of the CoreGRID project series of publications.

Vladimir Getov and Thilo Kielmann

Contributing Authors

Ali Afzal London e-Science Centre, Imperial College London, South Kensing-
ton Campus, London SW7 2AZ, UK (lesc-staff@doc.ic.ac.uk)

Marco Aldinucci Istituto di Scienza e Tecnologie dell’Informiazione, ISTI-
CNR, Via Buonarroti, 2 - 56127 Pisa, Italy (Marco.Aldinucci@isti.cnr.it)

Martin Alt Institut für Informatik, University of Münster, Einsteinstraße 62,
48149 Münster, Germany (mnalt@math.uni-muenster.de)

Françoise André IRISA/Université de Rennes 1, Campus universitaire de
Beaulieu, 35042 Rennes cedex, France (Francoise.Andre@irisa.fr)

Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059
Kraków, Poland (balis@uci.agh.edu.pl)

Purushotham Bangalore Department of Computer and Information Sciences,
University of Alabama at Birmingham, Birmingham, AL 35294, USA
(puri@cis.uab.edu)

Françoise Baude INRIA Sophia Antipolis, CNRS - I3S - University of Nice
Sophia-Antipolis, 2004, Route des Lucioles, BP 93, F-06902 Sophia-Antipolis
Cedex - France (Francoise.Baude@sophia.inria.fr)

Marian Bubak Institute of Computer Science, AGH, al. Mickiewicza 30,
30-059 Kraków, Poland (bubak@uci.agh.edu.pl)

Jérémy Buisson IRISA/INSA, Campus universitaire de Beaulieu, 35042
Rennes cedex, France (Jeremy.Buisson@irisa.fr)

xiv COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Sonia Campa Dept. of Computer Science, University of Pisa, Via Buonarroti,
2 - 56127 Pisa, Italy (campa@di.unipi.it)

Denis Caromel INRIA Sophia Antipolis, CNRS - I3S - University of Nice
Sophia-Antipolis, 2004, Route des Lucioles, BP 93, F-06902 Sophia-Antipolis
Cedex - France (Denis.Caromel@sophia.inria.fr)

Jeremy Cohen London e-Science Centre, Imperial College London, South
Kensington Campus, London SW7 2AZ, UK (lesc-staff@doc.ic.ac.uk)

Massimo Coppola Istituto di Scienza e Tecnologie dell’Informazione, ISTI-
CNR, Via Buonarroti, 2 - 56127 Pisa, Italy (Massimo.Coppola@isti.cnr.it)

Marco Danelutto Dept. of Computer Science, University of Pisa, Via Buonar-
roti, 2 - 56127 Pisa, Italy (marcod@di.unipi.it)

John Darlington London e-Science Centre, Imperial College London, South
Kensington Campus, London SW7 2AZ, UK (lesc-director@doc.ic.ac.uk)

Jan Dünnweber Institut für Informatik, University of Münster, Einsteinstraße
62, 48149 Münster, Germany (duennweb@math.uni-muenster.de)

Liang Fang Department of Computer Science, Indiana University, Blooming-
ton, IN 47401, USA (lifang@cs.indiana.edu)

Nathalie Furmento London e-Science Centre, Imperial College London, South
Kensington Campus, London SW7 2AZ, UK (lesc-staff@doc.ic.ac.uk)

Dennis Gannon Department of Computer Science, Indiana University, Bloom-
ington, IN 47401, USA (gannon@cs.indiana.edu)

Vladimir Getov Harrow School of Computer Science, University of Westmin-
ster, Watford Rd, North wick Park, Harrow, London HA1 3TP, UK
(V.S.Getov@westminster.ac.uk)

Sergei Gorlatch Institut für Informatik, University of Münster, Einsteinstraße
62, 48149 Münster, Germany (gorlatch@math.uni-muenster.de)

Contributing Authors xv

Jeff Gray Department of Computer and Information Sciences, University of
Alabama at Birmingham, Birmingham, AL 35294, USA (gray@cis.uab.edu)

Murtaza Gulamali London e-Science Centre, Imperial College London, South
Kensington Campus, London SW7 2AZ, UK (lesc-staff@doc.ic.ac.uk)

Francisco Hernández Department of Computer and Information Sciences,
University of Alabama at Birmingham, Birmingham, AL 35294, USA
(hernandf@cis.uab.edu)

Stavros Isaiadis Harrow School of Computer Science, University of Westmin-
ster, Watford Rd, Northwick Park, Harrow, London HA1 3TP, UK
(S.Isaiadis@westminster.ac.uk)

Gopi Kandaswamy Department of Computer Science, Indiana University,
Bloomington, IN 47401, USA (gkandasw@cs.indiana.edu)

Sriram Krishnan Department of Computer Science, Indiana University,
Bloomington, IN 47401, USA (srikish@cs.indiana.edu)

Domenico Laforenza Istituto di Scienza e Tecnologie dell’Informazione, ISTI-
CNR, Via G. Moruzzi, 1 - 56126 Pisa, Italy (Domenico.Laforenza@isti.cnr.it)

Bruce Long Harrow School of Computer Science, University of Westminster,
Watford Rd, Northwick Park, Harrow, London HA1 3TP, UK
(B.D.Long@westminster.ac.uk)

Andrew Lumsdaine Open Systems Laboratory, Indiana University, 501 N.
Morton St., Bloomington, IN 47404, USA (lums@open-mpi.org)

Anthony Mayer London e-Science Centre, Imperial College London, South
Kensington Campus, London SW7 2AZ, UK (lesc-staff@doc.ic.ac.uk)

Steve McGough London e-Science Centre, Imperial College London, South
Kensington Campus, London SW7 2AZ, UK (lesc-staff@doc.ic.ac.uk)

xvi COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Matthieu Morel INRIA Sophia Antipolis, CNRS - I3S - University of Nice
Sophia-Antipolis, 2004, Route des Lucioles, BP 93, F-06902 Sophia-Antipolis
Cedex - France (Matthieu.Morel@sophia.inria.fr)

Jens Müller Institut für Informatik, University of Münster, Einsteinstraße 62,
48149 Münster, Germany (jmueller@math.uni-muenster.de)

Steven Newhouse London e-Science Centre, Imperial College London, South
Kensington Campus, London SW7 2AZ, UK (lesc-staff@doc.ic.ac.uk)

Jean-Louis Pazat IRISA/INSA, Campus universitaire de Beaulieu, 35042
Rennes cedex, France (Jean-Louis.Pazat@irisa.fr)

Diego Puppin Istituto di Scienza e Tecnologie dell’Informazione, ISTI-CNR,
Pisa, Italy and Dept. of Computer Science, University of Pisa, Via Buonarroti,
2 - 56127 Pisa, Italy (Diego.Puppin@isti.cnr.it)

Kevin Reilly Department of Computer and Information Sciences, University of
Alabama at Birmingham, Birmingham, AL 35294, USA (reilly@cis.uab.edu)

Luca Scarponi Dept. of Computer Science, University of Pisa, Via Buonarroti,
2 - 56127 Pisa, Italy (scarponi@di.unipi.it)

Alexander Slominski Department of Computer Science, Indiana University,
Bloomington, IN 47401, USA (aslom@cs.indiana.edu)

Jeffrey M. Squyres Open Systems Laboratory, Indiana University, 501 N.
Morton St., Bloomington, IN 47404, USA (jsquyres@open-mpi.org)

Jeyarajan Thiyagalingam Harrow School of Computer Science, University
of Westminster, Watford Rd, Northwick Park, Harrow, London HA1 3TP, UK
(T.Jeyan@westminster.ac.uk)

Marco Vanneschi Dept. of Computer Science, University of Pisa, Via Buonar-
roti, 2 - 56127 Pisa, Italy (vannesch@di.unipi.it)

Michal Wegiel Institute of Computer Science, AGH, al. Mickiewicza 30,
30-059 Kraków, Poland (mwegiel@uci.agh.edu.pl)

Contributing Authors xvii

Laurie Young London e-Science Centre, Imperial College London, South
Kensington Campus, London SW7 2AZ, UK (lesc-staff@doc.ic.ac.uk)

Corrado Zoccolo Dept. of Computer Science, University of Pisa, Via Buonar-
roti, 2 - 56127 Pisa, Italy (zoccolo@di.unipi.it)

I

APPLICATION-ORIENTED DESIGNS

BUILDING APPLICATIONS
FROM A WEB SERVICE BASED
COMPONENT ARCHITECTURE

Dennis Gannon, Sriram Krishnan, Alexander Slominski, Gopi Kandaswamy,
and Liang Fang
Department of Computer Science
Indiana University
Bloomington, IN, USA

gannon@cs.indiana.edu
srikish@cs.indiana.edu
aslom@cs.indiana.edu

gkandasw@cs.indiana.edu
lifang@cs.indiana.edu

Abstract This chapter describes an approach to building large-scale, distributed applica-
tions based on a software component composition model that allows web services
to be used as the basic units. The approach extends the Common Component
Architecture used in many parallel supercomputer applications, from static com-
position of directly coupled processes to a system that incorporates mediated
workflow between remote services. The system also allows legacy applications
to be easily wrapped as a component and executed from a service factory. We
motivate the work in terms of a large, distributed application for modeling severe
storms. The entire system is based on a three-level architecture with a portal
providing the user interface, a set of security and factory service utilities in the
middle and the application services and components in the back-end.

Keywords: Web services, software component architectures, legacy applications, portals,
XCAT3

4 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

1. Introduction
The goal of building software from pluggable components is not new. Unix

pipes allowed simple linear composition of programs based on composing an
output stream with an input stream. In the area of computer visualization sys-
tems like AVS [9] allowed users to put together complex graphics applications
by composing graphs of simple filter and rendering components. The Common
Component Architecture (CCA) [4] is a modern component system that is used
to build large supercomputer simulations by coupling together components such
as linear solvers and boundary condition evaluators. Many other component
systems exist they differ primarily in the way individual components are re-
quired to behave and in the semantics of the method of composition. Most use
a variation of the “inversion of control” pattern which is based on extracting
the control of the overall application and placing it in surrounding framework.

Grid systems are distributed frameworks for sharing resources among the
membership of a virtual organization. Currently Grids are designed as a collec-
tion of common services which provide security, data management, application
execution scheduling, notification and logging, policy expression and system
monitoring. These services are often implemented as web services and many
Grid applications can be constructed by composing collections of basic services
and “atomic” application components.

For example, the LEAD project [10] is trying to build a distributed cyber
infrastructure powerful enough to enable the “better than real-time” prediction
of mesoscale weather events such as tornadoes. One of the goals of LEAD is to
allow a scientist to compose applications that are advanced Grid measurement
and prediction scenarios of various types. For example, an application may
allow a user to select a region of land such as a state or a few counties, and a
data query, such as current radar data. From this information, the application
begins a data mining monitoring process which searches the radar data in that
region for anomalous behavior. When strange conditions are detected, compute
resources are allocated and a series of simulations are launched. The simulations
are monitored to see how they align with the real weather and those that are not
consistently tracking reality are terminated. Addition resources may be applied
to those that are accurate. For example, the radar array be asked to provide
more detail so the resolution of the simulation can be increased. This type of
application is a good example of a dynamic workflow that requires an extensive
distributed framework of services to be composed. Specifically, the services
include

Metadata catalog services for extracting information about past storm
histories and available instrument data streams for a given geographic
region.

A data mining service that can be configured to mine the instrument data.

Building Applications from a Web Service based Component Architecture 5

Resource allocators for both space and computation

Simulation instance factories that can be used to launch version of a
simulation with different parameters.

Visualization services that can convert the output of simulations into
movies and other display data the user wants.

Logging services so the user can keep track of what is going on.

In the sections that follow we will outline a service composition model that
allows these service components to be composed by scientists to enact spe-
cific experimental prediction scenarios. The system is based on a three level
architecture. The user interacts with the system by means of a Grid portal that
forms the first level. In the second level we have the security framework and
application factories. At the third level are the specific service instances that
participate in computation.

2. The Portal

The Grid portal is based on the Open Grid Computing Environment (OGCE)
[23] framework. But it could also use any JSR-168 compliant portal such as the
GridSphere [22]. The OGCE portal allows the user to interact Grid applications
and services from a standard web browser. The portal provides each user
with a context of resources including a proxy identity certificate to allow the
portal to authenticate with remote grid services on behalf of the user. The
portal provides tools for defining geographic regions, querying and searching
metadata catalogs, checking job execution logs, cataloging experimental results
and defining workflows with simple graphical tools.

The portal represents the top layer of the grid stack. The bottom layer of the
stack is a set of shared resources. These may be real (computers, databases,
instruments) or virtual (documents, name spaces, ontoloties). Above the re-
source layer we have the Open Grid Services Infrastructure (OGSI) [13] or the
Web Service Resource Framework (WSRF) [14], which is a set of basic web
service abstractions designed to provide a standard mechanism for describing
resources.

From our perspective, a set of services that provide a mechanism for com-
municating “events”, such as WS-Notification, is critical. We will return to this
issue below.

Built upon these foundations we have the Open Grid Service Architecture
which is the federation of services that define the core grid platform. Finally, as
shown in Figure 1, the portal build upon these services to create the application
level services it needs.

While the portal provides several other workflow composition tools, such
as an interface to upload Dagman Condor scripts, the graphical component

6 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 1. The layered organization of a Grid. The portal is the user’s access point.

composition tool is the primary mechanism for building applications based on
web services and CCA components. The user interface 2 is a simple “drop and
drag” composer that is similar to the standard CCA composer or the Scirun II
composer1. It is also similar to the Triana [7] and Kepler [18] interfaces.

The primary difference between our composer and others lies in the back
end. The OGCE composer allows both web service and CCA components to
be integrated into a single application. While this work is still in progress and not
yet released, it is based on a compiler that translates the graphical specification
of the application into a standard workflow language. We will return to this
topic later in this chapter.

There is one more important point to make about the composer: it is an
example of how a Grid services provides an interface to the user through the
portal. Our model for doing this is similar to the WSRP specification [20], but
it takes advantage of the structure of a Grid service. For Grid services that have
user interfaces, we have defined a “standard” service data element (in OGSI
terms) or resource (in WSRF) terms that provides the URL to load the GUI for
that service. This GUI may be an applet (as in the case of the composer) or it
may be an xhtml document with imbedded java script.

1Scirun [24], from the University of Utah, is also based on CCA.

Building Applications from a Web Service based Component Architecture 7

Figure 2. Component Composer Interface. This is the standard way most component systems
use to assemble small workflows. This version is an applet that will be distributed as part of
OGCE.

There are two difficult problems that must be solved when you want a user
to interact with a service through a remote client interface. What do you do
when the Grid service is behind a firewall? What do you when the Grid service
requires the user to use WS-Security when it talks to the service? The user may
have the interface, but not their own X.509 identity certificate. The solution
to both of these problems is to filter all transaction between the service and
the user through the portal, which we assume is a gateway through the firewall
and also has access to the user’s proxy certificiate. The protocol is as follows.
When the user discovers the Grid service in the portal directory, a special servlet
in the portal fetches the interface and passes it to the user. The user interact
with the GUI which sends user commands back though the browser HTTPS
connection to the portal. The portal then forwards those commands back to the

8 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Grid service using the user’s credentials for the XML digital signature in the
WS-Security-based communication with the service (see Figure 3).

Figure 3. Protocol for loading a remote user interface for a Grid service.

3. Wrapping Legacy Applications as Components

One of the most frequently asked questions about this system is, “I have a
Fortran application that I cannot modify. Can I use it in this system?” In other
words, in what way can we turn a legacy application into a service component?
By legacy application, we mean a program that can be submitted through a batch
queue. For example, a script that that inserts some text into a program, compiles
it and then runs it while consuming some input files and producing some output
files. We do not consider the case of interactive applications, though, in some
cases, it is possible to threat them in the same way we describe here.

Our approach is to use the factory pattern. We will build a service which is
capable of starting an instance of the application on behalf of the service client.
The input to the factory is either through a direct web service call, or through
a user interface as described in the previous section. The input consists of any
configuration parameters that the factory needs to start the job running.

There are two problems that must be solved. First, it is not hard for a web-
service programming professional to write a web service to build an application
factory. But it is often the case that the person who wishes to build such a service
is the scientific programmer who is responsible for the deployment and testing
of the application. This person is not a web-services programming expert. So
can we automatically generate the factory for an application from a specification
provided by the application provider?

The second problem involves security. One problem with sharing legacy
applications is deployment. An application may run in one user’s environment,
but it may take a substantial effort to deploy it in another user’s environment.
Furthermore once an application leaves the developers control, that developer

Building Applications from a Web Service based Component Architecture 9

now has a version control problem. This is one motivation for provide the
application as a service rather than as a program. But if an application provider
creates an application factory that can instantiate a running instance of the
application for somebody else, then how do we provide the authorization control
mechanism that determines exactly who is allowed to run the application?

Taking the first question, we note that we have built an Factory Service
Generator into the portal server. This allows the application provider to auto-
matically generate a factory service from a relatively simple xml specification.
The user need only provide:

a script that can execute the application. Any needed input files should
appear as filename parameters to the script. In addition we assume that the
script take a “jobname” parameter so that it can create a private working
directory for each run of the program. (The factory service assumes it
can run multiple instances of the application concurrently so care must
be taken that intermediate and final files are not overwritten.)

an XML file that describes the application and the input parameters and
other annotations to be placed on the user interface to the factory.

Given these two items, the portal can automatically generate a factory and
start it running on behalf of the application providing user. When invoked the
factory simply executes the script. There are no restrictions on this script other
than the those described above. In many cases, we have the script run another
web service which is a transient instance of a service that is dedicated to one
user. In other cases, we have the script execute a complete workflow. In any case
it is very useful if the script has the capability of sending event notifications
such as “job complete”, “output file is at URL ../jobname/filename” or “job
failed because...”. Python, GridAnt [26] and other high level scripting tools
have this capability. We will describe how this is used later.

Once the factory is running, the provider must decide who is allowed to
invoke it. The solution we use is based on capabilities. Each application
provider supplies a list of individuals or groups that he or she will allow to
run his or her application factory. The portal capability manager will then,
for each user and group, create a signed XML capability document that says
this individual or group has permission to execute the application factories
“create instance” methods. When one of these users logs into the portal, the
portal server loads the proxy cert for the user, which is then used to load that
user’s capabilities (see Figure 4). If the user invokes the factory service, the
appropriate capability is added to the SOAP header for the service request. The
factory service verifies that the request is authentic and that the capability is
authentic and that the requestor is the same person as the capability certificate.

10 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 4. Capability-based authorization protocol for access to factory services.

4. XCAT3 - Integrating CCA Components and Grid
Services

We briefly introduce CCA [4] and OGSI before presenting the architecture
of the XCAT3 [19] framework in the following subsections.

4.1 Common Component Architecture

CCA is defined by a set of framework services, and the definitions of the
components that use them. Each component communicates with other compo-
nents by a system of ports. Ports are defined by a type system that is expressed
in the Scientific Interface Definition Language (SIDL) [11]. SIDL is similar in
nature to WSDL, but differs in the support it provides to data structures common
to scientific computing. There are two types of CCA ports:

Provides Ports are the services offered by the component. Each provides
port implements an interfaced defined in SIDL.

Uses Ports are the hooks that enable a component to use a service pro-
vided by another component. Uses ports are stubs that a component uses
to invoke the services provided by another component. Uses ports are
also defined in SIDL.

Building Applications from a Web Service based Component Architecture 11

A uses port of one component can be connected to a provides port of another
component as long as they implement the same SIDL interface. Connections
between uses and provides ports are made at runtime. A component needs to
execute a getPort statement to grab the most recent reference to provider,
and a releasePort when it has finished using it. The get/release semantics
of component connections enable the framework to infer if any port calls are
being made at any point in time, and also enable the connections to be changed
dynamically.

Apart from uses and provides ports, a component also implements a Compo-
nentID interface that has methods that uniquely indentify the component, and
provide metadata about it. CCA also defines a Builder service for creation and
composition of these components.

4.2 Grid Services
The Open Grid Services Infrastructure extends the Web services model by

defining a special set of service properties and behaviors for stateful Grid ser-
vices. Some of the key features of OGSI that separate Grid services from simple
Web services are:

Multiple level naming: OGSI separates a logical service name from a
service reference. A Grid Service Handle (GSH) provides an immutable
name for a service, while a Grid Service Reference (GSR) provides a
precise description of how to reach a service instance on a network, e.g.,
a WSDL reference. A GSH can be bound to different GSRs over time.

Dynamic Service Introspection: Grid services can expose metadata
to the outside world through the use of Service Data Elements (SDE),
which are XML fragments that are described by a Service Data Descriptor
(SDD). SDEs can be queried by name or type, and can be used to notify
state changes to clients.

Standardized ports: Every Grid service implements a GridService port,
which provides operations to query for SDEs, and manage lifetime of the
Grid service. OGSI also specifies standard ports for creation, discovery,
and handle resolution.

Recently, OGSI has been superceded by the WSRF [14] proposal, which
also addresses the above issues for stateful Grid services, but tries to integrate
them better with the current Web service standards.

4.3 XCAT3 Architecture
Currently, the XCAT3 framework is implemented in Java, and we plan to

implement a C++ version that is interoperable with the former. In XCAT3, we

12 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 5. Every XCAT3 component port is a Grid service. It contains SDEs with locators for
all provides ports, which are also Grid services themselves.

implement the CCA specification in the context of Grid services. To that end,
some of the key features of XCAT3 are:

Ports as Grid services: As per the CCA specification, one component
can have more than one provides port of the same type. Simple Grid
and Web services allow multiple ports of the same portType; however,
multiple bindings of the same port are semantically equivalent. Hence,
the same operation on different ports of the same type affect the service
in exactly the same way. However, unlike Web service ports, ports in
CCA are designed to be stateful. Hence, every provides port in XCAT3
is implemented as a separate Grid service 5. The consequence of this is
that every provides port inherits multiple level naming from the OGSI
specification, and this enables the ports to be location independent. Ad-
ditionally, any Grid service that is compliant with the OGSI specification
can serve as a provides port.

ComponentID as a Grid service: The ComponentID, as specified by
the CCA specification, is also implemented as a Grid service. It exposes
handles and references of all the provides ports that a component con-
tains, and thus acts as a manager for the component. Users can query a
component for the types of services provided via the ComponentID, and
connect to them directly.

Building Applications from a Web Service based Component Architecture 13

Some of the other useful services in the XCAT3 framework are:

Builder Service: As mentioned before, the Builder service defines
methods for component creation and composition. We allow remote in-
stantiation of components via ssh or Globus GRAM provided by the Java
CoG [3] kit. For composition purposes, the Builder service provides
connect anddisconnect methods for connecting and disconnecting a
uses port to a provides port respectively. Once the ports have been con-
nected, all communication between them is via Web service invocations
provided by the XSOAP [25] toolkit.

Handle Resolver: Since we employ multiple level naming for our ports
and ComponentIDs, we need to use a handle resolution mechanism that
translates a GSH to a GSR. This is provided by the Handle Resolver
service. The Handle Resolver, as other Grid services in the XCAT3
framework, is implemented using the GSX [16] toolkit, which provides
a lightweight implementation of the OGSI specification.

5. An Example
As an example that integrates most of these ideas together, we consider an

application that is part of a much larger LEAD scenario. Much of LEAD
requires large simulations based on weather data input. The output of these
simulations consists of data fields that represent severe thunder storms and
tornadoes. It is useful to have a tool that can generate visualizations from these
simulation outputs. We have an application factory that launches a OGRE script
[2] for which sets up the LAM MPI on a cluster and runs a parallel rendering
program on the output from the Weather Research and Forecasting (WRF)
job. Once the parallel rendering is complete, it launches a conversion program
which translates the rendered output to a GIF movie that can be viewed from the
browser. OGRE scripts are capable of publishing events into the notification
system (which is currently being converted to work with WS-Notification). An
event listener, listens for all events published under the topic defined by the
name of this OGRE execution. These events are logged into a special directory
service visible from the portal. The entire workflow is depicted in Figure 6.
(Note that the workflow for this example predates the composer tool described
earlier. The workflow was hand crafted and not generated from the picture.)

The user can discover the status of each execution of this workflow by going
to the portal “Grid Context” directory service. There entry for each execution
looks like a directory which contains a list of all parameters used to launch the
workflow, the log of execution events and a reference to the output GIF movie.
As shown in Figure 7, selecting “status” displays the log of events received.
In Figure 8, we see that selecting “results” will run the GIF movie in the right
hand window.

14 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 6. Complete distributed WRF output animation application. The output from the WRF
simulation is used as input to the OGRE animation script. All components log events to the
event channel. The event listener captures them and pushes them to the directory service.

Figure 7. A Directory service record for this execution of the workflow. Selecting “Status”
shows the even log.

6. Conclusion

This chapter has illustrated a three level architecture for distributed Grid ap-
plications. At the top level we have a Grid portal which contains a suite of tools
for creating grid services and composing application from them. This portal
provides the secure interface to the back end Grid which may run behind a

Building Applications from a Web Service based Component Architecture 15

Figure 8. Selecting “Results” shows the output movie on the right.

firewall. The middle tier is a set of services that support our Grid applications.
These include security services, such as a proxy certificate repository, an autho-
rization system based on capability tokens, directory services and a notification
system. One important tools is a factory service generator that allows users to
describe a legacy application and the portal will generate a factory service to
access and launch instances of that application. The back end is composed of
the application resources and services.

We also describe how we transformed the Common Component Architecture
into a Grid service-based framework. This allow CCA components to be used
as Grid services and composed into service-based workflows. It also allows
regular web services to be integrated into CCA distributed applications.

In the year ahead we will on building applications from services and CCA
components. While much has been done, we feel there is much more to be
learned and the most important discoveries will come from applying this tech-
nology to real problems.

Acknowledgments

We would like to thank our collaborators on the LEAD project for their help
in understanding the issues, and the NSF and DOE for their support of the
projects that funded this work.

16 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Agarwal, and M. Parashar. Enabling Autonomic Compositions in Grid Environments.
Proceedings of 4th International Workshop on Grid Computing (Grid 2003), Phoenix,
AZ, USA, IEEE Computer Society Press, pp. 34–41, November 2003.

J. Alameda, Orchestrating Applications on Remote Resources, a powerpoint presentation,
www.grids-center.org/train/GRIDS-Alameda.ppt.

Argonne National Lab. Commodity Grid Toolkit. http://www.globus.org/cog. 2004.

R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, and B.
Smolinski. Towards a common component architecture for high performance scientific
computing. In Proceedings of Eighth IEEE International Symposium on High Performance
Distributed Computing, 1998.

Business Process Execution Language for Web Services Version 1.1. http://www-
106.ibm.com/developerworks/library/ws-bpel/

H. Casanova and J. Dongarra. NetSolve: a network server for solving computational
science problems. In Proceedings Supercomputing (SC 96).

D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson, M. Shields, I. Taylor,
and I. Wang. Programming Scientific and Distributed Workflow with Triana Services, to
appear.Concurrency and Computation: Practice and Experience, 2005.

Condor Dagman, http://www.cs.wisc.edu/condor/dagman/

I. Curington andM. Coutant. AVS: A flexible interactive distributed environment for scien-
tific visualization applications. Proceedings of 2nd Eurographics Workshop on Scientific
Visualization, 1991.

K.K. Droegemeier, V. Chandrasekar, R. Clark, D. Gannon, S. Graves, E. Joseph, M.
Ramamurthy, R. Wilhelmson, K. Brewster, B. Domenico, T. Leyton, V. Morris, D. Murray,
P. Plale, R. Ramachandran, D. Reed, J. Rushing, D. Weber, A. Wilson, M. Xue, and S.
Yalda. Linked environments for atmospheric discovery (LEAD): A cyberinfrastructure for
mesoscale meteorology research and education. Preprints, 20th Conference on Interactive
Information Processing Systems for Meteorology, Oceanography, and Hydrology, Seattle,
WA, American Meteorological Society, 2004.

N. Elliott, S. Kohn, and B. Smolinski. Language Interoperability for High-Performance
Parallel Scientific Components. International Symposium on Computing in Object-
Oriented Parallel Environments (ISCOPE). 1999

I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems Integration,
www.globus.org/research/papers/ogsa.pdf

Global Grid Forum, The Open Grid Services Infrastructure Working Group.
http://www.gridforum.org/ogsi-wg, 2003.

Globus Alliance, IBM, and HP. Web Service Resource Framework.
http://www.globus.org/wsrf. 2004.

GridLab, The GridSphere Portal http://www.gridsphere.org

Grid Service Extensions (GSX). http://www.extreme.indiana.edu/xgws/GSX. 2004

Java Community Process, JSR-168 Portlet Specification.
http://www.jcp.org/aboutJava/communityprocess/final/jsr168/

Kepler: A System for Scientific Workflows, http://kepler.ecoinformatics.org/

Building Applications from a Web Service based Component Architecture 17

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

S. Krishnan and D. Gannon. XCAT3: A Framework for CCA Components as OGSA
Services. In HIPS 2004, 9th International Workshop on High-Level Parallel Programming
Models and Supportive Environments. IEEE Computer Society Press, April 26, 2004.

A. Kropp, C. Leue, and R. Thompson. Web Services for Remote Portlets (WSRP), OASIS
http://www.oasis-open.org

A. Mayer, S. McGough, N. Furmento, J. Cohen, M.Gulamali, L. Young, A. Afzal,
S.Newhouse, and J. Darlington. ICENI: An Integrated Grid Middleware to support e-
Science. In: Component Models and Systems for Grid Applications, pp. 109–124, Springer,
2004.

J. Novotny. Developing grid portlets using the GridSphere portal framework, http://www-
106.ibm.com/developerworks/grid/library/gr-portlets/

Open Grid Computing Environment (OGCE), http://www.ogce.org.

S.G. Parker and C.R. Johnson. SCIRun: A scientific programming environment for com-
putational steering. In Supercomputing (SC 95). IEEE Press, 1995.

A. Slominski, M. Govindaraju, D. Gannon, and R. Bramley. Design of an XML based
Interoperable RMI System : SoapRMI C++/Java 1.1. Proceedings of IPDPS 2001.

G. von Laszewski, K. Amin, M. Hategan, N.J. Zaluzec, S. Hampton, and A. Rossi. GridAnt:
A Client-Controllable GridWorkflow System, In Proceedings 37th Hawai’i International
Conference on System Science, Jan 5-8, 2004

The Weather Research and Forecasting (WRF) Model. http://www.wrf-model.org/

COMPONENTS FOR HIGH-PERFORMANCE
GRID PROGRAMMING IN GRID.IT *

Marco Aldinucci,1 Sonia Campa,2 Massimo Coppola,1

Marco Danelutto,2 Domenico Laforenza,1 Diego Puppin,1’
2

Luca Scarponi,2 Marco Vanneschi,2 and Corrado Zoccolo2

(1) – Istituto di Scienzae Tecnologie dell’Informazione, ISTI-CNR, Pisa, Italy
(2) – Dept. of Computer Science, University of Pisa, Italy

{Marco.Aldinucci,Massimo.Coppola,Domenico.Laforenza,Diego.Puppin}@isti.cnr.it
{campa,marcod,scarponi,vannesch,zoccolo)-@di.unipi.it

Abstract This chapter presents the main ideas of the high-performance component-based
Grid programming environment of the Grid.it project. High-performance com-
ponents are characterized by a programming model that integrates the concepts of
structured parallelism, component interaction, compositionality, and adaptivity.
We show that ASSIST, the prototype of parallel programming environment cur-
rently under development at our group, is a suitable basis to capture all the desired
features of the component model in a flexible and efficient manner. For the sake
of interoperability, ASSIST modules or programs are automatically encapsulated
in standard frameworks; currently, we are experimenting Web Services and the
CORBA Component Model. Grid applications, built as compositions of ASSIST
components and possibly other existing (legacy) components, are supported by
an innovative Grid Abstract Machine, that includes essential abstractions of stan-
dard middleware services and a hierarchical Application Manager (AM). AM
supports static allocation and dynamic reallocation of adaptive applications ac-
cording to a performance contract, a reconfiguration strategy, and a performance
model.

Keywords: structured parallel programming, programming models, adaptive applications,
high performance computing, reconfiguration

*This work has been supported by the Italian MIUR FIRB Grid.it project (RBNE01KNFP) on High-
performance Grid Platforms and Tools, and by the MIUR CNR Strategic Project L 499/97-2000 on High-
performance Distributed Enabling Platforms.

20 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

1. Introduction
In the context of Grid platforms at various levels of integration [18], a Grid-

aware application must be able to deal with heterogeneity and dynamicity in
the most effective way (adaptive applications), in order to guarantee the spec-
ified level of performance in spite of the variety of run-time events causing
modifications in resource availability (load unbalancing, node/network faults,
administration issues, emergencies, and so on). With respect to traditional plat-
forms, when the Grid is taken into account it is much more important to rely on
application development environments and tools that both guarantee high-level
programmability, application compositionality, software interoperability and
reuse, and, they are able to achieve high-performance and the ability to adapt to
the evolution of underlying technologies (networks, nodes, clusters, operating
systems, middleware) [8,17,21,26,27,30,32]. Achieving this high-level view
of Grid application development is the basic goal of our research, in the Grid.it
national project [20] and in associated initiatives at the national and European
level.

In order to be able to design, develop and deploy such kind of high per-
formance Grid-aware applications efficiently, we are interested in innovative
programming environments that

i)

ii)

iii)

support the programmers in all the activities related to parallelism ex-
ploitation, by providing some kind of structured primitives for parallelism
exploitation;
allow to achieve full interoperability with existing software, both parallel
and sequential, either available in source or in object form;
support and enforce reuse of already developed code in other applications.

In particular, we want to exploit the experience of our group in the design and
implementation of structured parallel programming environments [13, 22, 23]
to target Grids composed of clusters or networks of heterogeneous workstations
[1, 3, 5,6,15]. We think that a component-based programming environment is
a suitable starting point to achieve the goals just stated.

In this work, we discuss the essential features of a programming environ-
ment that is based both on the component model and on structured parallelism.
The programming environment is a layer of a larger picture, such as the one
in Table 1. We will first discuss the features of a component-based parallel
programming model. Then, we’ll take into account how these features are cur-
rently or will be soon supported in ASSIST. ASSIST is a structured parallel
programming environment that was originally designed to address cluster and
networks of TCP/IP workstations only, in the framework of the Italian national
project ASI-PQE2000 [31]. We show that ASSIST is a suitable basis to capture
all the desired features in a flexible and efficient manner, and, in particular, we
discuss how the original ASSIST environment is currently being transformed

Components for High-Performance Grid Programming in Grid.it 21

into a component-based, Grid-aware parallel programming environment. This
evolution of the ASSIST environment is being performed in the framework of
the Grid.it Italian national project. Grid.it is a 3 year project involving ma-
jor research institutions in Italy aiming at providing innovative programming
methodologies and tools for Grids. The project has a specific work-package,
leaded by our group, aimed at designing and implementing a prototype high-
performance parallel programming environment for Grids. Component-based
ASSIST is the expected, assessed outcome of this work-package.

1.1 Related Work
Several studies recognized that component technology could be leveraged

to ease the development of Grid applications. We assume as reference compo-
nent standards the CORBA Component Model (CCM), because of its clean and
rich component model [24–25], and the Web/Grid Services [19], because they
are emerging as the standard infrastructure to integrate heterogeneous systems.
The Common Component Architecture (CCA) is a prominent standardization
effort, aiming at the definition of a high-performance oriented component ar-
chitecture [10]. We depart from CCA-based approaches like CCaffeine [11]
as we explicitly deal with component composition issues (see Section 2 and
Section 3.2).

Our approach differs from that of GridCCM [16], as the latter focuses on
communication optimization, while our work targets application adaptivity and
Grid-awareness in general.

22 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

We are closer to the GrADs project [14] with respect to the concept of adap-
tivity and in some architectural aspects, but we differentiate in the programming
model. Our model, being based on structured parallel programming, has the
ability i) to synthesize from the parallel structure of applications the perfor-
mance models used to adapt their computation, and ii) to control the applica-
tion configuration at run-time, using a parametric implementation of the parallel
programming constructs.

A closely related project to our one is ProActive [7], which extends the
Fractal component framework for Java [9] to support parallel, reconfigurable
component architectures on the Grid. We share with the Proactive project the
departure from flat component models to move toward explicit component com-
position, the emphasis on run-time adaptivity of component structures, and the
exploitation of these hierarchical structures to manage application reconfigu-
ration. We differentiate from that research as we are not limited to Java, we
have instead a well defined, language-based separation between sequential pro-
gram behaviour and parallel coordination, at the intra- and inter- component
levels. Our primary goal in improving component interaction is also different,
as we want to exploit a broader set of interaction mechanisms than RMI. On
the contrary, Proactive primarily exploits parallel and collective RMI abstrac-
tions (and their optimizations e.g. by means of futures) to extend the sequential
component framework to a parallel, distributed one.

2. High-Performance Components for Grid-Aware
Applications: Computational Model

The basic features needed to implement a component-based, high perfor-
mance programming environment targeting the Grid include most of those al-
ready implemented in currently available component models, such as JavaBeans
[29] or the CORBA Component Model [25]. These features are those needed to
implement a distributed or a parallel program, that is they are mainly framework
features and communication/interaction mechanisms. Concerning the frame-
work mechanisms, we obviously need handy ways of both creating/instantiating
and calling components across the different processing elements of the target
architecture. We also need mechanisms and features that offer the programmer
the possibility of controlling the parallel behavior of the Grid-aware application.

In the Grid.it programming environment, we want to provide such mecha-
nisms in the most abstract way possible. In particular, we want to leave the
programmer the ability of concentrate on the functional behavior of the appli-
cation, as well as on the qualitative aspects of parallelism exploitation. That is,
we want to relieve the programmer of the responsibility of directly handling all
the details related to the quantitative aspects of parallelism exploitation, and all
those related to the usage of specific Grid middleware mechanisms.

Components for High-Performance Grid Programming in Grid.it 23

To understand the features of a high-performance components environment,
it can be useful to distinguish three conceptual levels: a) computational model,
b) functional and non-functional interfaces and c) support architecture for Grid-
aware applications. In this section, we start to deal with the first issue. The
other ones are discussed in successive sections, where the Grid.it approach
based on ASSIST is presented. From the point of view of the computational
model, we propose that high performance components are studied and charac-
terized in terms of the following features: parallelism, component interaction,
composition, and adaptivity.

Parallelism. In general, components have an internal parallel structure (intra-
component parallelism). It must be possible to configure several, distinct ver-
sions of the same component, all versions having the same functional inter-
faces. Moving from one version to another one could be done by recompiling
and/or reloading, in the most simple situations (static versions); however, we
are interested also in parallel components that are able to change their internal
structure/behaviour at run time (dynamic versions), depending on functional
conditions (e.g. predicates on the computation state) and/or on non-functional
conditions (e.g. variations in the achieved performance). In addition to intra-
component parallelism, the inter-component parallelism is fundamental for
high-performance component applications as well.

Component Interaction. Most component-based frameworks supply a way
to declare the public services provided by a component and to invoke a ser-
vice provided by a (remote) component. The mechanism is based on the
uses/provides port abstraction. While being essentially a new edition of
the RPC/RMI paradigm, this is sufficient to guarantee proper interactions be-
tween components, when they follow this simple client/server model. As an
example, task farm computations (that is, embarrassingly parallel ones) can be
implemented very efficiently using these mechanisms.

However, different mechanisms are needed to implement other parallel pat-
terns. For instance, pipelines cannot be easily expressed by means of the us-
es/provides port mechanism. Therefore, we assume that at least two distinct
mechanisms are implemented:

events, that is a way to register event handlers and to propagate events
through the component network. This mechanism is already present
in CCM. It can be exploited to implement all the typical asynchronous
activities of parallel computations, such as monitoring.

streams, that is a way to have uses/provides ports that implement data-
flow-like channels for sequences of unidirectional typed communica-
tions, without incurring in the performance penalties related to the return

24 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

messages and synchronizations typical of the plain uses/provides port
mechanism.

In general, a component has several input streams and several output streams,
that can be used in a data-flow and/or in a nondeterministic fashion. A rich set of
interaction mechanisms, which are typical of the parallel computation models,
is fundamental also in order to implement higher-level abstractions, such as
complex workflow-based PSEs.

Composition. Currently available component models allow components to
interact in several different ways. However, only a few of them (e.g. CCM
with the assembly construct) consider component composition as a primitive
operation. In our opinion, composition is fundamental to allow more and more
complex parallelism exploitation patterns to be developed and provided to the
user as components. As derived from our experiences with algorithmic skele-
tons, as soon as an efficient mechanism to exploit basic parallelism patterns is
available (see [4,12]) then the need for nesting/composition mechanisms arises
(see [5, 13]). By exploiting pattern composition, new parallel patterns can be
programmed, best suited to user’s needs. Furthermore, by properly restricting
the visibility of user-defined, composed parallel patterns, different degrees of
programmability of parallel applications can be presented to different classes
of users.

In our context, we assume to design a structured, component-based program-
ming environment, and we actually want to be able to exploit composition of
components to provide new, non-primitive components supporting the devel-
opment of Grid-aware parallel applications.

In conclusion, we need to define complex computation structures by means of
the parallel composition of parallel components. A composition of components
can be defined and reused as a new component in more complex structures.
We assume that a general, explicitly parallel structure is encapsulated into a
component in order to create a basic parallel component.

Adaptivity. A Grid-aware application must be able to deal with heterogene-
ity and dynamicity in order to guarantee the specified level of performance, in
spite of the variety of run-time events that can change resource availability. A
component must be characterized by non-functional interfaces, related to the
performance control, and by features that allow the programmer to specify how
the computation adapts at run time. Moreover, these features have to be imple-
mented efficiently at the run-time support level.

A strong relationship exists between the four features stated above. They
must be integrated consistently in a global approach, framework, or better, in a

Components for High-Performance Grid Programming in Grid.it 25

programming model for high performance Grid programming. In Grid.it, we
use ASSIST as the programming model able to satisfy this requirement.

3. ASSIST as the Basic Programming Model for
High-Performance Components

We introduce ASSIST as derived from the NOW/COW programming envi-
ronment as the way to denote parallel, high-performance, component-based,
Grid applications. We also discuss how already implemented ASSIST features
match the requirements emerging from the previous Section discussion or can
be exploited/improved to match such requirements.

3.1 Basic Features of the ASSIST Programming Model

ASSIST programs are structured as generic graphs (identified by the keyword
generic), where nodes are parallel or sequential modules and arcs represent
typed streams of data/objects. No constraint is imposed to the form of graphs,
though “structured” graphs, such as those typical of a classical skeleton model,
are a notable class of cases that have efficient implementations.

All the interactions that are of interest in the composition of high-performance
components are implemented easily and efficiently with the ASSIST streams.
Streams are inherently asynchronous, however RPC/RMI interactions can be
emulated effectively.

Parallel modules are expressed by a generic skeleton, called parmod. In
this context, “generic” means that a parmod is a general-purpose construct that
can be tailored, for each application, to specific instances of classical stream-
parallel and/or data-parallel skeletons, and also to new forms of regular and
irregular parallelism.

A parmod operates on multiple input streams and multiple output streams.
Several distribution and collection strategies are provided for the input and
output streams respectively. Moreover, input streams can be controlled in a
data-flow or in a nondeterministic manner. Nondeterminism is important to
model several instances of workflow structures, as well as interaction by events.

The parallel computation expressed in aparmod is decomposed in sequential
units assigned to abstract executors called virtual processors (VP). The parmod
can have an explicitly defined internal state for the duration of the computation.
This feature is important in many cases, for example in nondeterministic/reac-
tive computations, as well as in many irregular and dynamic computations.

As in any model for structured parallel programming, the parmod construct
is characterized by the important property that the implementation model is
parametric. This means that the realization of the run-time support is largely
independent of the actual mapping of the virtual processors of parmod onto the

26 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

real processors: this is true as far as it concerns the distribution of functions,
the distribution of data, and the communication.

In the same way, an instance of a parmod is characterized by a performance
model, which is parametric with respect to the actual realization. In the struc-
tured parallel programming community, a large amount of performance models
have been provided for many stream-parallel and data-parallel skeletons. In
ASSIST, we exploit this experience in order to characterize the behaviour of a
parmod in terms of the performance it can offer according to the actual mapping.
In many cases, i.e. where the parametric behaviour is predictable, the perfor-
mance model is recognizable at compile-time, while in other, more dynamic
cases, the association of a performance model to the computation, expressed by
a parmod, requires some annotation by the programmer and/or the knowledge
of the past history of the system or application. All the performance models can
be made available, in a sort of Performance Model Repository, to the strategies
implemented by the compiler and to the run-time support.

The “parametricity” feature (parametric implementation model and paramet-
ric performance model) is the basis for the implementation of adaptive strategies
in high-performance Grid-aware applications. How this issue is dealt with in
Grid.it will be discussed in detail in Section 4.1.

The “genericity” of theparmod construct offers an interesting opportunity to
express adaptive parallel computations by program. That is, the same parmod
(the same collection of virtual processors, input and output streams, and state
variables) can express different parallelism forms according to the value of the
internal state or of the input values. For example, in the Divide & Conquer im-
plementation of the C4.5 algorithm [31], in different phases the Divide module
has a data-parallel or a task-farm-like behaviour, in order to optimize the avail-
able parallelism in each phase of the computation. Because of the huge amount
of data associated to the internal state, this flexible implementation in ASSIST
is much more efficient than an equivalent version in which the data-parallel
phase and the farm-like phase are expressed by different specific skeletons.

In other words, ASSIST offers a powerful feature for expressing and im-
plementing adaptive computations: the same computation can be expressed
according to several alternative strategies. As we describe in Section 4.1, al-
ternative strategies can be associated to values generated by the program at
run-time, or they can be selected according to the actual performance values
with respect to the performance contract.

ASSIST modules can refer to external objects during any phase of the com-
putation, i.e. to objects not defined by the ASSIST coordination language and,
consequently, that are referred according to their specific interfaces/APIs. In
addition to libraries and system facilities (I/O, file, data bases), current external
objects in ASSIST are shared variables, CORBA remote objects, storage ob-

Components for High-Performance Grid Programming in Grid.it 27

jects and data repositories. The existence of external objects is a further facility
to express alternative strategies for adaptive computations.

ASSIST provides full interoperability with CORBA; not only an ASSIST
program can act as a client of a CORBA server, but, most significantly, an
ASSIST program can be automatically compiled as a CORBA object with RMI-
like synchronous invocations or with stream-like asynchronous data passing. It
has been shown [2] that the overhead introduced by the program transformation
is definitely acceptable for many parallel applications.

This experience proves that interoperability features can be merged effi-
ciently into the ASSIST model, in order to design applications as composition
of components, some of which will eventually be parallel.

3.2 ASSIST and Components

We figured the road-map transforming ASSIST programs/modules to com-
ponents as follows: first, we allow ASSIST modules to be encapsulated as
components in existing, well known component frameworks; then we include
in the component framework all the mechanisms needed to implement high-
performance applications; eventually, we integrate the framework in such a way
that parallel ASSIST components and existing legacy components can coexist
in an high-performance parallel Grid application. Following this road-map, our
current research [2] will produce the next version of ASSIST (2.0), where an
ASSIST program, expressed either as a single ASSIST module or as a graph of
parallel or sequential modules, is considered as a high-performance component
which:
a)

b)

can be composed using standard component frameworks, in addition to the
native ASSIST mechanisms,
exports non-functional interfaces and features automatic support to adaptive
applications, which will be discussed in the next section.
W.r.t. standard frameworks, we are experimenting several solutions based

on Web Services (WS) and the CORBA Component Model (CCM). The imple-
mentation approach is similar to the one already adopted for CORBA 2 inter-
operability, i.e. the compiler generates bridge ASSIST modules, which support
the various kind of component ports related to the functional interfaces, as well
as ports related to the non functional interfaces.

From the point of view of compositionality, the ASSIST based approach
offers the following features:

i)
ii)

a component (either WS or CCM) encapsulates an ASSIST (sub)graph,
components can be composed according to ASSIST mechanisms or accord-
ing to the mechanisms of the standard component framework adopted.

In the first solution of point ii), two or more components, being ASSIST
graphs, are composed by the generic construct, which describes the structure

28 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

of the resulting ASSIST graph in terms of component modules and streams (and
possibly external objects). The composed ASSIST program is automatically
compiled into a standard component. This solution can be adopted when the
components are all (new or existing) ASSIST programs whose ASSIST source
code is available.

In the second solution of point ii), the programmer uses the interaction mech-
anisms of the component framework (ports) to compose two or more compo-
nents. This approach is typically adopted when one or more of the components
of the application are existing (legacy) components that have not been designed
in ASSIST.

4. Support Architecture for Applications Based on
High-Performance Adaptive Components

According to what stated in previous sections, several critical points have to
be addressed when we tackle adaptivity control in Grid-aware applications. In
particular, non-functional interfaces and reconfiguration strategy and applica-
tion management have to be taken into account. In this section, we will discuss
how these features have been taken into account in the design of our prototype
of the component-based parallel programming environment ASSIST 2.0.

4.1 Non-Functional Interfaces and Reconfiguration
Strategy

We assume that a Grid-aware application is a composition of high perfor-
mance components. That is, we restrict to the case where no legacy, non-parallel
components are used in the application.

Let us consider the case in which such components are ASSIST components
(graphs of sequential modules and/or parmods), composed by means of the
generic graph construct. In addition to functional interfaces, that are auto-
matically generated at compile time (out of the ASSIST code), each component
is characterized by non-functional interfaces. They are expressed as annota-
tions in a proper formalism, which is translated by the compiler into a run-time
representation based on XML. Such annotations convey information about per-
formance contract, reconfiguration strategy, and allocation constraints. The
template of an ASSIST component thus assumes the form shown in Figure 1.

Performance Contract. Many parameters can be used to specify the per-
formance level that is required for the application. In this chapter, we refer to
the processing bandwidth (service time) in stream-based computations, and/or
to the completion time, which is significant also for non-stream computations.
However, the following discussion is largely independent of the specific per-
formance parameters adopted.

Components for High-Performance Grid Programming in Grid.it 29

Figure 1. Template of an ASSIST component

The performance contract can be specified for the whole application and/or
for every single component. If the required performance of every component is
specified, the required performance of the whole application can be derived at
compile time using the knowledge of the graph. For example, the methodology
of queueing networks can be used, both in the case of asynchronous stream and
in the case of RMI-like interaction. If only the whole application performance
is specified, it is still possible to derive rough information at compile and run
time on the performance of the single components, using profiling estimates and,
most important, taking into account that an ASSIST component is a composition
of ASSIST modules for each of which a performance model may be known on
the basis of a Performance Model Repository.

Additional information related to communication bandwidth and latency
must be estimated; of course, the reliability of this information may not be
very accurate. However it is exactly because of these and other inaccuracies,
which are inherent of Grid platforms, that we need a support for adaptive Grid-
aware applications.

Reconfiguration Strategy. For each component, the application designer
specifies which way the component has to be restructured at run-time if and
when the performance contract happens to be no longer satisfied.

The reconfiguration strategy is basically expressed in ASSIST with the ad-
dition of some annotation. In Section 3.1 we saw that ASSIST allows the
programmer to express alternative strategies (e.g. different parametric forms
of parallelism) directly in the same program, when their activation depends on
the values of some program variables (e.g. the internal state of a parmod).
Moreover, the programmer can also specify that alternative strategies must be
activated when the performance contract is violated. Let us consider the fol-
lowing example (Figure 2).

a) Component C1 is an interface towards a Grid memory hierarchy, that vir-
tualizes and transforms data sets available on the Grid into two streams of
objects, the first one (whose elements have an elementary type) is sent to
C2, and the other (whose elements have array type) is sent to C3. C1 may

30 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 2. Example of an adaptive application expressed by parallel components

be an existing component available on the Grid, mediated by an ASSIST
program.

b) C2 is a parallel component encapsulating an ASSIST program. The recon-
figuration strategy of C2 specifies that

“by default” C2 is a sequential module executing a certain function
F;

when the current performance level must be adjusted C2 is transformed
into a farm computation whose workers execute the same function
F. The actual number of workers will be determined parametrically
at run-time, according to the performance model and to the current
availability of resources.

c) C3 is a parallel component encapsulating an ASSIST data-parallel program
operating on each stream element of array type. As in the case of C2, the
strategy of C3 specifies that its parallelism degree (i.e. the amount of real
processors onto which the virtual processors are mapped) can be modified,
if needed.

d) C4 is a parallel component encapsulating an ASSIST program which, by
default, is a sequential module, but it can be restructured into a parmod
operating on the input stream according to a data-parallel or to a task farm
style, depending on the values of the parmod state and on the input values
themselves. Therefore, in this case the adaptation principle is applied at two
levels: at the program level and at the run-time support level.

e) C5 is a parallel component encapsulating an ASSIST program operating
nondeterministically on the input values received from C3 or C4, and trans-
forming the two streams into a data set.

Let us assume that, at a certain time, some monitoring activity signals that
C2 is becoming a bottleneck and that this causes a substantial degradation of
performance of the whole application. C2 can be transformed into a version
with suitable parallelism degree. In this case other components may have to be
restructured (e.g. C4,C5) in order to guarantee the level of performance. As

Components for High-Performance Grid Programming in Grid.it 31

previously stated, this is possible according to a global strategy based on the
knowledge of the application structure.

When restructuring data-parallel components (C3), the strategy must be ap-
plied also to the re-distribution of the data constituting the internal state of a
parmod.

More sophisticated strategies can be expressed in ASSIST than those shown
in the example: the strategy of C4 could depend just on performance require-
ments instead of predicates on the internal state, and other alternative strategies
could exploit external objects, as opposed to strategies based on the stream
composition only.

Allocation Constraints. In general, restructuring high-performance com-
ponents involves resources belonging to different Grid nodes. In the example
above, the new workers of C2 can be allocated onto processors of a cluster
from a different Grid node. There are instead several cases in which we must
put constraints on resource allocation. For instance, several components (C1
and C5, say) can be executed only on certain Grid nodes and no reconfigura-
tion is permitted, either due to security or privacy reasons, or to requirements
related to the kind of resources needed to operate on the data sets. This kind
of information has to be associated with the reconfiguration strategy of every
component.

4.2 Application Management for Reconfiguration
We eventually come to the point where the implementation of the high-

performance component framework has to be taken into account. The software
architecture of Grid.it component-based parallel programming environment is
organized as shown in Figure 3. The run-time environment of ASSIST 2.0
is implemented on top of a Grid Abstract Machine (GAM), which in turn is

Figure 3. Grid.it software architecture Figure 4. Grid Abstract Machine

32 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

implemented on top of existing middleware (currently a version of the Globus
Toolkit) and realizes the functionality needed by the programming environment
to support high-performance, component-based Grid-aware applications.

As shown in Figure 4, the GAM consists of the Application Manager and
of the abstraction of the services for Resource Management and Scheduling,
Monitoring, and other services (accounting and so on).

Application Manager Structure. The Application Manager (AM) has a
hierarchical structure. Figure 5 illustrates the simple case of an application
consisting of just one component, structured as a graph of ASSIST modules.

Figure 5. Example of an ASSIST com-
ponent

Figure 6. Two interacting ASSIST com-
ponents

Each ASSIST module is associated with a Module Application Manager
(MAM): each is responsible of the configuration control of the asso-
ciated module. A global strategy for the configuration control of the whole
component is implemented by the Component Application Manager (CAM).

In the example of Figure 2, each of the components consists of
one module and the whole application is wrapped as a component Then,
the AM consists of a two-level tree in which are leafs and

is the root.
Application management is, in principle, a centralized process. It can be

realized in a decentralized way, according to several strategies. We suppose
that the decentralization is realized in a hierarchical manner. Moreover, for
availability reasons, we assume that the root is designed according to princi-
ples of fault-tolerance, e.g. using redundancy and, possibly, mechanisms for
checkpointing.

The hierarchical structure can be extended at any level according to the com-
positionality and abstraction strategy adopted for the application. For example,

Components for High-Performance Grid Programming in Grid.it 33

Figure 6 shows the same application of Figure 5 in which we recognize two
components, consisting of modules and and consisting of
modules and The whole application, which can be seen as the compo-
sition of and is considered as a component Thus, in addition to
the same leaf managers we have and at
the second level, and at the root.

Module Application Managers (MAMs). The MAM level is an ASSIST
abstraction, independently of the fact that the application is structured as a
(hierarchical) composition of higher-level components. At the MAM level we
implement the configuration control of the single ASSIST modules (parmonds)
exploiting the associated performance model. As introduced in Section 3, a
Performance Model Repository is provided in the programming environment
and it is updated according to the history of the applications running in the
system. The specific performance model of each module, to be found in the
performance model repository, can be recognized

by the compiler, according to the knowledge of some parallelism forms.
Examples of parallelism forms which are statically recognizable in AS-
SIST are farms (with and without state), data parallel computations with
fixed or variable static stencils, and some mixed combinations of stream-
and data-parallelism;

by the programmer, in all the cases in which his knowledge is more
accurate, and/or a new parallelism form and the associated performance
model are expressed by properly and specifically instantiating a parmod
construct.

As discussed in Section 3 and 4, the reconfiguration strategies of an ASSIST
module can exploit different forms of parallelism, different data distribution/-
collection strategies, and the usage of external objects. Moreover, in case of
data-parallel behaviour, data can be redistributed at run-time according to load
balancing strategies that cannot be (have not been) recognized at compile-time.
Notice that, for stream-parallel farm-like structures, load balancing is always
implemented by the run-time support.

MAM behaviour is basically event-driven, where the events indicate the
opportunity/necessity for restructuring the associated ASSIST module. One
kind of event is generated according to the outcome of Monitoring service
invocations. In this case, the MAM can provide the following sequence of
actions:

a restructuring strategy is taken into account, either based on the ASSIST
alternative descriptions or on load balancing for data parallel modules;

34 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

in case of alternative parallel strategies, the performance model from the
performance model repository is applied, a proposed solution to recon-
figuration is derived,

the non transient nature of the event is assessed and therefore

the father CAM is informed about this proposal.

The MAM can also receive an event by the father CAM indicating that it has
to apply a restructuring strategy because a global variation of performance has
been detected. For example, in the computation of Figure 6, can ask

to apply a reconfiguration strategy in order to increase the bandwidth
in consequence of an increase of bandwidth of

Component Application Managers (CAMs). Each CAM applies control
strategies at a global level for the associated component.

As indicated above, a CAM can receive proposals of restructuring by the
child MAMs. In this case, the CAM has to apply a global performance model
(e.g. queueing network based model) in order to individuate a good solution
to the restructuring of one or more of the children modules. The Allocation
Constraints, indicated in the non-functional interfaces of the component, are
also applied during this process.

Recursively, a CAM can receive reconfiguration requests from father CAMs,
and can send them reconfiguration proposals. The root CAM is re-
sponsible for the final decisions in the global reconfiguration control which, as
seen, is a sort of parallel and asynchronous Divide & Conquer strategy applied
along the hierarchical Application Manager structure.

At each CAM level, the Resource Management and Scheduling services pro-
vided by the Grid Abstract machine are utilized. Notice that such services do
not necessarily coincide with the services in the standard middleware, instead
they represent the abstraction that are strictly needed by the Application Man-
ager. That is, a “RISC-like” GAM is defined, though starting from a monolithic
Middleware level; in the next future, this GAM service structure could be the
basis for the proposal of a new Risc-like Middleware level.

5. Experiments
The features to be included in the Grid Abstract Machine have been experi-

mented using Lithium, a full Java, RMI based, structured parallel programming
environment [3]. Lithium has been often used to experiment solutions that have
been then moved to ASSIST, as the former is much more compact and easy to
modify than the latter. These experiments showed that

Components for High-Performance Grid Programming in Grid.it 35

almost perfect scalability can be achieved, even in the case when hetero-
geneous resources are used for the execution. The measured execution
times are usually no more than 5% away from the ideal ones.

good tolerance to typical “dynamic” situations, such as the presence of
faulty nodes, can be achieved. In presence of a number of faulty nodes not
exceeding 20% of the nodes used to compute the parallel application, an
increase of less than 10% of the total execution time has been measured.

The proposed AM organization and behaviour, described in Section 4, have
then been evaluated on some ASSIST examples, emulating the dynamic features
of the run-time support and of the MAM/CAM hierarchical organization. The
implementation of a first version of this support is on-going. Figure 7 shows the
results achieved in a set of reconfiguration experiments [28]. The experiments
have been performed using an application whose structure was a pipeline of
three stages: the first and the third stages are data servers and stream managers,

Figure 7. Experiments in dynamic restructuring of parallel components

36 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

and the second stage is a data parallel version of the finite difference method
for solving differential equations (Jacobi method).

Figure 7-a shows how the Application Manager can satisfy the performance
contract (service time) by increasing the amount of real processors onto which
virtual processors of a data-parallel stencil computation are mapped. Figure
7-b shows the effect of transient variations of system load, that have no effect in
the performance in the long period (we employed an exponential mean, reset at
every reconfiguration). Figure 7-c shows the more serious effects of a perturbing
overload caused by the creation of a new application onto the same processing
nodes. In this case, we assume that no more processing nodes are available,
thus only the load balancing solution is attempted, with a suitable redistribution
of data partitions implemented directly by the run-time support. Fig. 7-d shows
a situation similar to Fig. 7-c: the difference is that more processing nodes
are now available, and, after a first attempt of applying data redistribution, the
degree of parallelism of the data parallel module is successfully increased.

These experiments have been performed on a heterogeneous cluster, con-
firming that the Application Manager overhead is quite acceptable, and the
performance obtained is the same as in the case of optimal static mapping.
More intensive experiments to evaluate the Grid overhead are on-going.

6. Conclusion and Ongoing Work

In this chapter we have outlined the guidelines of our research in high per-
formance component-based programming environments which are Grid-aware,
in the context of the Grid.it national project. We have shown that ASSIST
is a suitable programming model on which to build all the complex features
of the programming environment. In addition to showing the feasibility of
component-based ASSIST, we have proposed a Grid Abstract Machine, includ-
ing a hierarchical Application Manager to control resources for dynamically
adaptive applications, structured by ASSIST components.

In the Grid.it project, a large amount of application case-studies provide
intensive experiments and benchmarks of the proposed ideas and tools. In
the short term, the on going research activity will produce a new version of
ASSIST with a full implementation of all the features discussed in this chapter
and providing full interoperability with both CCM components and plain web
services as well.

In the medium term, the research will produce ASSIST version 2.0, in which
the ideas and first prototypes for the Grid Abstract Machine will be studied, im-
plemented and evaluated and the whole, component-based, high-performance,
structured parallel programming environment will be deployed.

Components for High-Performance Grid Programming in Grid.it 37

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, S. Magini, P. Pesciullesi, L. Potiti,
R. Ravazzolo, M. Torquati, M. Vanneschi, and C. Zoccolo. The implementation of AS-
SIST, an Environment for Parallel and Distributed Programming. In Euro-Par 2003 Par-
allel Processing, LNCS, 2790:712–721, Springer, August 2003.

M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo. ASSIST as a
Research Framework for High-performance Grid Programming Environments. Technical
Report TR-04-09, Dept. Computer Science - University of Pisa, February 2004. TR-04-09
available at http://www.di.unipi.it/Ricerca/TR.

M. Aldinucci, M. Danelutto, and P. Teti. An advanced environment supporting struc-
tured parallel programming in Java. Future Generation Computer Systems, 19(5):611–
626, 2003.

P. Au, J. Darlington, M. Ghanem, Y. Guo, H.W. To, and J. Yang. Co-ordinating hetero-
geneous parallel computation. In L. Bouge, P. Fraigniaud, A. Mignotte, and Y. Robert,
editors, Europar ’96, pages 601–614. Springer, 1996.

B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. A Structured
High level programming language and its structured support. Concurrency Practice and
Experience, 7(3):225–255, May 1995.

B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi. SklE: a heterogeneous environ-
ment for HPC applications. Parallel Computing, 25:1827–1852, December 1999.

F. Baude, D. Caromel, and M. Morel. On hierarchical, parallel and distributed components
for Grid programming. In: Component Models and Systems for Grid Applications, pp. 97–
108, Springer, 2004.

F. Berman, R. Wolski, H. Casanova, et al. Adaptive Computing on the Grid using AppLeS.
IEEE Trans. On Parallel and Distributed Systems, 14(5), 2003.

E. Bruneton, T. Coupaye, and J. B. Stefani. Recursive and Dynamic Software Composi-
tion with Sharing. In 7th International Workshop on Component-Oriented Programming
(WCOP02), ECOOP 2002, Malaga, Spain, June 2002.

CCA working group. The common component architecture technical specification - ver-
sion 0.5 (as amended through 3/5/2001). http://www.cca-forum.org.

Ccaffeine home page, 2003. http://www.cca-forum.org/ccafe/.

M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computations. Re-
search Monographs in Parallel and Distributed Computing. Pitman, 1989.

M. Cole. Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel
programming, Parallel Computing, 30(3):389–406, 2004.

H. Dail, O. Sievert, F.Berman, H. Casanova, A. YarKhan, S. Vadhiyar, J. Dongarra, C. Liu,
L. Yang, D. Angulo, and I. Foster. Scheduling in the Grid Application Development
Software Project. In: Grid Resource Management: State of the Art and Future Trends, pp.
73–98, Kluwer, 2003.

M. Danelutto, R. Di Meglio, S. Orlando, S. Pelagatti, and M. Vanneschi. A methodology for
the development and support of massively parallel programs. Future Generation Computer
Systems, 8(1–3):205–220, July 1992.

A. Denis, C. Pérez, T. Priol, and A. Ribes. Bringing High Performance to the CORBA
Component Model. In SIAM Conference on Parallel Processing for Scientific Computing,
February 2004.

38 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

B. Ensink, J. Stanley, and V. Adve. Program Control Language: a programming lan-
guage for adaptive distributed applications. Journal of Parallel and Distributed Comput-
ing, 63(11): 1082–1104, 2003.

I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing Infrastruc-
ture, chapter 11, The Globus toolkit. Morgan Kaufmann Pub., S.Francisco, CA, 1998.

I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. Grid Services for Distributed System
Integration. Computer, 35(6): 37–46, June 2002.

Grid.it project: Enabling platforms for high-performance computational grid oriented to
scalable virtual organizations. MIUR, FIRB National Research Programme, November
2002, http://www.grid.it.

K. Kennedy, M. Mazina, J. Mellor-Crummey, K. Cooper, L. Torczon, F. Berman, A. Chien,
H. Dail, O. Sievert, D. Angulo, I. Foster, D. Gannon, L. Johnsson, C. Kesselman, R. Aydt,
D. Reed, J. Dongarra, S. Vadhiyar, and R. Wolski. Toward a Framework for Preparing and
Executing Adaptive Grid Programs. In Proc. of NSF Next Generation Systems Program
Workshop (IPDPS 2002), 2002.

H. Kuchen. A Skeleton Library. In Euro-Par 2002, Parallel Processing, LNCS, 2400:620–
629, Springer, August 2002.

S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szafron, and K. Taa. From Patterns
to Frameworks to Parallel Programs. Parallel Computing, 28(12):1663–1684, December
2002.

Object Management Group. The Common Object Request Broker: Architecture and Spec-
ification, Minor revision 2.4.1, http://www.omg.org, 2000.

Object Management Group. Corba Component Model, v3.0, November 2001. Document
ptc/2001-11-03, available at http://www.omg.org/.

C. Pérez, T. Priol, and A. Ribes. PaCO++: a parallel object model for high performance dis-
tributed systems. In Distributed Object and Component-based Software Systems, Hawaii
Int. Conf. System Sciences, IEEEComp. Soc., 2004.

T. Priol. Programming the Grid with Distributed Objects. In Proc. of Workshop on Per-
formance Analysis and Distributed Computing (PACD 2002), 2002.

L. Scarponi. Supporti alla programmazione Grid-aware –Esperienze di allocazione dinam-
ica di programmi ASSIST (Grid-aware programming support: experiments in dynamic
program allocation with ASSIST). Master’s thesis, University of Pisa, April 2004, (in
Italian).

Sun. Javabeans home page. http://java.sun.com/products/javabeans, 2003.

D. Thain, T. Tannenbaum, and M. Livny. Grid Computing: Making the Global Infrastruc-
ture a Reality, chapter Condor and the Grid. Wiley, 2003.

M. Vanneschi. The programming model of ASSIST, an environment for parallel and dis-
tributed portable applications. Parallel Computing, 28(12):1709–1732, December 2002.

R. van Nieuwpoort, J. Maassen, R. Hofman, T. Kielmann, and Henri Bal. Ibis: an Effi-
cient Java-based Grid Programming Environment. In ACM JavaGrande ISCOPE 2002
Conference, pp. 18–27, Seattle, WA, November 2002.

TOWARDS BUILDING A GENERIC
GRID SERVICES PLATFORM:
A COMPONENT-ORIENTED APPROACH

Jeyarajan Thiyagalingam, Stavros Isaiadis, and Vladimir Getov
Harrow School of Computer Science
University of Westminster
Harrow, London, U.K.

T.Jeyan@westminster.ac.uk
S. Isaiadis@westminster.ac.uk
V.S.Getov@westminster.ac.uk

Abstract Grid applications using modern Grid infrastructures benefit from a rich variety
of features, because they are designed with built-in exhaustive set of functions.
As a result, the notion of a lightweight platform has not been addressed prop-
erly yet, and current systems cannot be transplanted, adopted or adapted easily.
With the promise of the Grid to be pervasive, it is time to re-think the design
methodology for next generation Grid infrastructures. Instead of building the
underlying platform with an exhaustive rich set of features, in this chapter, we
describe an alternative strategy following a component-oriented approach. Hav-
ing a lightweight reconfigurable and expandable core platform is the key to our
design. We identify and describe the very minimal and essential features that a
modern Grid system should always offer and then provide any other functions
as pluggable components. These pluggable components can be brought on-line
whenever necessary as demanded implicitly by the application. With the support
of adaptiveness, we see our approach as a solution towards a flexible dynamically
reconfigurable Grid platform.

Keywords: generic Grid platform, lightweight Grid platform, adaptive Grid, adaptive Grid
service

40 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

1. Introduction

In recent years, significant efforts have been made towards designing and
building advanced Grid infrastructures. One of the main priorities in building
new Grid systems is to assure longevity and flexibility. In order to support these
two seamlessly, the underlying Grid platform is normally built with a rich set
of features, such that the requirements of any Grid application need a subset
of the complete list provided by the platform. Recent standardisation efforts
and software for Grids [13–14] also aim at providing infrastructures with all
possible features built-in. The Open Grid Services Architecture (OGSA) [10],
on which most of the current Grid implementations are based, is built as a
feature rich specification. This approach ensures that any service request from
applications is covered by the complete set of features offered by the platform.

Complexity (in terms of interactions, manageability and maintainability) of
the implementation of any Grid platform based on this philosophy will be very
significant. For example, upgrading a service component in this model is a
difficult task. When one service component is modified, other components
also need to be modified. Further, deployment of these Grid systems demand
considerable computing resources. Managed and/or un-managed migration of
these Grid platforms is also a challenging task. Nor can they be extended
very easily in terms of functionalities and capabilities. For example, layering
an existing Grid platform on a lab of machines involve considerable effort
in configuring. Difficulties in configuring the platform involves removing or
disabling the unnecessary features and in extending the system capabilities. In
summary, current Grid systems are failing to address the issue of generality
and reconfigurability. This is not a design flaw; instead they are designed with
exhaustive set of services targeting longevity and flexibility – resulting in highly
complex platform, impeding the expandability.

This chapter summarises the current status of our ongoing work on design-
ing the architecture of a generic Grid platform. We identify a generic set of
features that should be common to any Grid system, while addressing the issue
of longevity and flexibility. Further, we also address the issue of a “lightweight
platform”. The motivation in identifying this common set of core features is to
standardise the road map for development of future Grid systems, which should
be adaptive and intelligent while retaining the features of flexibility, longevity
and expandability. The overall contributions of this chapter are:

Proposing a generic Grid platform with minimal complexity but with core
essential features;

Providing a seamless way of extending the platform capabilities by means
of component introduction;

Means to offer and guarantee more flexibility to the end users.

Towards Building a Generic Grid Services Platform 41

This chapter is organised as follows: Section 2 provides the background
for the chapter. Section 3 identifies the common set of features found across
different Grid platforms. Section 4 discusses the architectural aspects of this
core Grid platform while Section 5 concludes the chapter with future works.

2. Background and Related Work
The original motivation behind the OGSA development [10] was to offer

ubiquitous support for Grid infrastructures by converging Web Services and
Grid Services. The Open grid Services Infrastructure (OGSI) specification [17],
on which OGSA relies, included necessary extensions to support stateful web
services. However, the fact that these extensions were heavily object oriented
and the interoperability issues with the Web Services and XML, impeded the
adoption by the Grid Community.

Refactoring OGSI led to consider the Web Services Resource Framework
(WSRF) [8–9], which constitutes specifications for different web services and
management services. WSRF retains all OGSI functions but all these are en-
hanced to meet the web services specification, for example WS-Addressing [5].
The idea of adaptivity in Grid Systems has been discussed in [4] where main
emphasis is given either at the very low level, the middleware level, or at the
application level. However, the idea of service level adaptivity for heavily
componentised Grid systems has not been addressed in these works.

Reconfigurability at software components level, especially in the context of
Grid systems, has not been addressed in the literature. The notion of Web
Services is included in our proposed Generic Grid Services Platform both at
the higher level and at the lower level. In other words, the platform offers the
Grid Service as a web service. Further, componentised functionalities can also
be represented as web services. However, the lower level of service interaction
is transparent to the end-user or applications. These web-service components
are adaptive and an extra layer of flexibility is provided by permitting these
components to be re-wired as necessary to provide the reconfigurability.

3. Generic Services
OGSA was derived from use cases of e-business and e-science applica-

tions [11]. These applications require more functionality in addition to the
fact of being computationally demanding. This has influenced the architectural
aspects of OGSA and resulted in functionally-rich and thick platform specifi-
cation. To identify the minimal set of core features, an equal emphasis must be
given to small-scale applications and devices as well, contrary to the approach
that OGSA has taken.

The idea of the component-oriented design approach is to componentise the
functionality of the set of core features that should be offered by the platform.

42 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Later, the functionality of the platform can be extended by plugging in addi-
tional components on-demand. Enabling the generic platform to secure the
foreknowledge on these pluggable components, permits the platform to extend
the capability as necessary. Further, the platform should also be pro-active when
components are introduced in order to inter-relate the operations of different
components. For example, the platform should be able to recognise additional
operations when a self-healing functionality is plugged in, so that any further
negotiations with the fault-tolerant component can be done effectively.

A permanent component implementing a core feature for the generic Grid
platform is defined as Feature. The information related to an optional compo-
nent, which might be plugged in whenever its implemented feature is necessary,
is defined as Feature Knowledge. Feature Knowledge related to a specific
component provides information only about the component, expected inter-
face, and interaction map across components, which enables cross-component
operations. The Feature Knowledge Set is a collection of Feature Knowledge.
Members of the Feature Knowledge Set do not implement any of the functional-
ities. Instead, functionalities are separately and exclusively implemented inside
the respective components. In other words, the Feature Knowledge Set is the
foreknowledge of the engine about pluggable components.

With these definitions, the idea is to design the generic Grid platform with a
minimal and essential Feature Set and with the necessary Feature Knowledge
Set. The platform has to be engineered such that new Feature Knowledge can
be added later on. However, in order to configure a functional Grid platform, it
may be necessary to select different permanent components depending on the
use case scenario. For example, it is essential to include a resource manage-
ment component to the generic Grid platform to realise a fully working Grid
platform. The reason why it is being added through the knowledge set is to
enable the development of tailored components. It is possible to include the
resource management inside the generic Grid platform as a permanent compo-
nent, but such a resource manager should be rich in features and some of them
may not be used at all. Consider a use case of a computer laboratory with PCs
turning to a Grid system during the middle of the night. The resource manage-
ment functionality for such a system is completely different than the one for a
supercomputer centre.

3.1 Feature Set

The following set of features must be available as part of the core of the
proposed Grid platform. These components and their interactions within a
Grid system are shown in Figure 1.

Core Operating Support: This results from feature extraction from the
Native Platform Services and Transport Mechanisms and OGSA Hosting

Towards Building a Generic Grid Services Platform 43

Environment from OGSA specification. This feature forms the concrete
resource-hosting environment. However, a main difference is that the ap-
proach taken in building this layer is similar to building the Java Virtual
Machine [16], building the core support for underlying operating sys-
tem/hardware pair. Once they are in place this feature enables the system
to handle the hosting of resources specific to the supported operating sys-
tems or hardware components, and the native resource managers manage
them. Effectively this feature provides the basic operating skeleton and
a hosting environment – an essential feature for a Grid Platform.

Core Connectivity Services: (The connectivity services can also be
the part of core operating support) Core connectivity services are to of-
fer networking and transport functions for data transfer across multiple
Generic Grid platforms and within the Grid domain. By default, it uses
the platform specific connectivity/network/transport parameters (such as
protocols) but can be varied by Feature Knowledge.

Knowledge Engine: This part interprets and understands the knowledge
sets discussed in the next section. This also permits addition of new
knowledge sets.

Component Management Engine (CME): This part manages the dif-
ferent components and triggers actions wherever applicable to handle the
cross-component interaction.

Service Management Engine (SME) / Service Manager (SM): All
service operations are orchestrated and coordinated by this kernel. It is
also responsible to direct the CME.

3.2 Feature Knowledge Set

As outlined above, effective operation of a Grid system inherently depends on
multiple capabilities of the Grid platform, which we decided to componentise.
An application, such as the one described in [11] may require introduction
and interaction of multiple components for the operation. A careful inspection
of [10–11] reveals that the following set of functionalities must be available as
separate components so that, whenever necessary, any component providing a
required functionality can be brought on line.

3.2.1 Basic Functionality Extension Components.

Resource Discovery

When a new resource enters a Grid environment must let the rest of the
Grid know what type of services it provides and also to find other available

44 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 1. Simplified layered diagram focusing on core features to be implemented inside the
proposed generic Grid services platform.

services in the Grid. Mechanisms have to be provided to support such a
dynamic resource discovery scheme. This is usually achieved with the
use of a registry along with relevant registration and query mechanisms.

Accounting / Metering and Pricing of Services / Resources

These services meter the usage of the resources, while for commercial
Grids a pricing/billing component should also be in place to control re-
source utilisation — (perhaps based on price limits) producing pricing
reports and necessary bills. Logging mechanisms are also required for
the provision of more advanced services like for example forecasting
which makes use of resource usage logs.

Monitoring

In a complicated and dynamic Grid environment, Monitoring services
for applications, resources and usages can assist in maintaining an “envi-
ronment”, providing valuable information for troubleshooting in case of
failures, supplying data regarding user applications and resource usage
among other information.

Data Management

Data management techniques such as data deployment/migration, data
replication and data sharing are common in a Grid environment and

Towards Building a Generic Grid Services Platform 45

should be supported by specialised components. Data migration (or
deployment), sharing and replication are important techniques and are
sometimes used to support failure/disaster recovery, higher performance
through parallel data processing, service continuation through data mir-
roring (replication), job scheduling and work load balancing and many
other procedures.

Notification / Reporting / Messaging

Notifications and messages are very important in emergency situations
like component or resource failures, but can also help in troubleshooting
and prevention of unwanted conditions like heavily loaded resources/ser-
vices or data inconsistencies.

Virtual Organisations (VO) Management

In terms of available resources, VOs can contribute to the deployment
of more scalable and richer Grids. Mechanisms have to be provided
that achieve automatic, dynamic VO creation (by merging collaborative
networking environments) and VO management.

Component-based Policy Management and Application

Policies play a very important role in any Grid environment and can be
present in almost every aspect of a Grid: resource management, security,
accounting, pricing and data management just to name a few. Compo-
nents/mechanisms that enforce the application of all these policies in an
automated manner can be provided here.

3.2.2 Security.

Authentication / Authorisation and Accounting

The most fundamental notions of security in a distributed environment
are those of authentication and authorisation. Authentication requires
both the consumer of a service and the service to authenticate themselves
to each other. This can be achieved with the use of a Public Key Infras-
tructure for example. Authorisation controls who has access to which
resources and can be provided by simple access lists or more sophisti-
cated techniques.

Certification

Every resource needs to present a certificate in order to register to the
Grid. This certificate can be acquired from an independent Certificate
authority and provides such information about the resource as the type
of service provided, owner of the resource and other.

46 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Encryption / Decryption

A cryptographic infrastructure is important in order to maintain confiden-
tiality of sensitive messages. This is usually achieved using a Public Key
Infrastructure to support digital signatures and encryption/decryption of
messages.

Various Security Infrastructure-supporting Components

The nature of the Grid assumes that many companies, organizations or in-
dividuals will participate in a Grid environment. Each of these parties will
probably make use of different security infrastructures and techniques.
Support services have to be in place to ensure secure interoperability
across these different platforms. Such services should minimally include
single sign-on, delegation of credentials and intrusion prevention and
detection.

Secure Inter-Grid Communications

Different Grid platforms should be able to communicate with each other
in order to utilise available resources and scale. We have to provide mech-
anisms to support inter-Grid collaboration and interoperability without
compromising security (mainly) or functionality.

3.2.3 Resource Management.

Provisioning

Components providing services such as scheduling of resources, reser-
vation and termination are included in this category. Advance reser-
vation, scheduling and provisioning as well as termination mechanisms
provide the necessary support for the smooth and efficient utilisation of
the available resources. Complimentary services like deadlock resolve
mechanisms or freeing resources bound to processes that terminated ab-
normally, can enhance functionality and increase availability.

Load Management / Balancing

Such services can increase performance and resource availability by elim-
inating possible communication bottlenecks and redistributing workloads
of heavily loaded resources to ensure that all resources are used uniformly.
Also, load balancing components can ensure that certain requirements are
met (or at least at the highest possible degree) by reallocating resources
depending on the Grid user demands. For example more resources could
be provisioned for a critical or highly prioritised application to ensure
increased performance.

Towards Building a Generic Grid Services Platform 47

Scavenging

Most workstation nodes present in a networking environment will re-
main idle most of the time according to many recent studies. In a Grid
environment, utilising these idle resources is of great importance. These
resources can be combined to create a huge secondary storage, memory
or CPU pool that could substantially improve performance in demanding
Grid applications. Scavenging mechanisms, however, should manage
idle resources very delicately since the end user response times should
not become unacceptable when the user decides to use his machine again.

3.2.4 Added Services.

Fault Tolerance

Fault tolerance requires mechanisms for fail-over, workload redistribu-
tion, service continuation and notification of other relevant services like
self-healing and disaster recovery. Fault tolerance is of extreme impor-
tance to real time environments or critical applications where even the
lowest possible percentage of down-time might be unacceptable and/or
disastrous.

Disaster Recovery

Disaster recovery mechanisms are also important in sensitive Grid envi-
ronments and should ensure continuation of at least the most vital ser-
vices. They should also take actions to restore system operation and
service, resource and application states as soon as possible (perhaps us-
ing backup data, previous checkpoints and last known state information).

Self-Healing

Self-healing is the ability of a system to monitor its resources, detect fail-
ures and plan and apply necessary changes to ensure resource availability
and service continuation. Human intervention should be kept to a min-
imum level and all operations should be performed automatically, with
human administrators only being notified in emergency or unresolved
situations.

Forecasting / Prediction

Forecasting components cooperate with and may require the presence
of scavenging, scheduling, workload balancing, metering and logging
mechanisms. They can then extract valuable usage pattern information
that can be used to predict the amount of time an idle workstation will
remain idle and assist that way in job scheduling and workload balancing
and reduce execution time costs.

48 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Optimisation

In addition to providing services, the platform should also optimise vari-
ous operational aspects of the system, applications running on them and
the interaction of different components in order to provide smooth and
efficient operation.

4. Engineering the Generic Grid Platform

In this section, we use two operational examples to illustrate the operation of
the generic Grid platform and then we discuss the design aspects of the platform.

4.1 Functionality

Although the core functionality built inside the generic Grid platform is very
minimal, when engaged in supporting an application, the platform must offer
all necessary services as required by the application. If such services are not
available from the platform itself (either as part of the core-feature set, or as
pluggable components), the internal mechanism may decide to secure a specific
service from a remote site because of the limited local resources or because it is
more efficient to act as a client rather than download and plug-in this particular
service component. If the remote site decides to not allow the component to
migrate, the platform may react according to a pre-configured policy or may
act adaptively. However, submission of a clear job description along with the
job, is an essential part of the whole process, as in [13].

The overall operation of the generic Grid platform solely depends on the
capability of the SME to accommodate, anticipate and to reconfigure the com-
ponents plugged in. Successful engineering of such a platform requires clear
understanding of the operation of the proposed platform. Here, we consider
two different applications with differing requirements to illustrate the operation
of the platform.

4.1.1 Operational Example 1. Consider the third use-case example as
described in [11], where a severe storm prediction is considered. Functionally,
the following sequence of operations will take place in our proposed platform:

1

2

3

The generic Grid platform announces the service availability through
UDDI [7].

An interested client forwards the job description request to the platform.

The SM/CME part of the platform analyses the job description. The
job description need to state all the requirements of features and should
supply a handle to any proprietary features. These proprietary features
can replace an already existing feature in the Grid platform, or can be

Towards Building a Generic Grid Services Platform 49

a completely new feature. It also verifies whether the set of features
requested by the application is not empty. This means that, a request for
a feature should exist on either the platform side or the client side. If
the platform fails to secure any service (either locally or remotely) the
request is terminated with a negative acknowledgement and positively
otherwise.

4

5

6

7

8

9

Having accepted the job, the SM/CME should authenticate the user and
authorise the job for further manipulation. This requires a feature which is
not present in the generic Grid platform, but available through on-demand
loading (in case of components) or through intra-Grid web-service (in
case of web-service). SM/CME identifies the end-point where the “AAA”
service is available and forwards the request and obtains the response
before proceeding further.

The policy component needs to be loaded and consulted to determine the
operational policy, if there are any, to be applied.

Once the job is authenticated and authorised, the SM/CME builds a list
of resources and features and builds the interaction and dependency map
between components or services.

This in turn requires a consultation with the resource reservation. This
necessitates the launching of resource management service which along
with the discovery, brokers the requests.

In case of reservation is favoured, the SM/CME updates the job status
and continues further with the other operations that does not break the
dependency or it waits until it is indicated that the resources are available.

If the advance reservation was done, then the SM/CME also delegates the
provisioning and management tasks to the resource management com-
ponent.

The SM/CME is notified about the resource availability.

If the customer wants to monitor the progress, the SM/CME loads and
launches the Monitor (Application Part) component, which reports the
status of the job at various time steps. This also triggers the launch-
ing of Reporting (or Notification or Messaging component) and logging
components.

SM/CME also launches the pricing/metering component.

As this application requests complete reliable service, the self-healing,
disaster recovery and fault tolerant components also loaded for this ap-
plication.

10

11

12

13

50 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Application also involves access to the large databases and this mandates
the loading of data management component.

High Performance and fair pricing strategy requires application and work-
load to be distributed evenly and to be balanced as much as possible across
the machines. This requires launching “load management and balancing”
component.

With an application that can spawn multiple other applications, it is neces-
sary to have proper synchronisation. This requires efficient orchestration
of the tasks executed on the Grid - and thus launching “Work-Flow”
component is inevitable.

The actual task servicing begins.

Along the time line, the SM/CME also should launch scavenging and
resource optimiser components to guarantee the all free cycles are har-
nessed.

Execution Terminates, modules are unloaded one by one, and the result
is forwarded to the customer.

14

15

16

17

18

19

4.1.2 Operational Example 2. Contrary to the large scale Grid appli-
cation discussed above, here we consider a very small, but computationally
demanding application. The application is CFD simulation of a moving car
and the end-user is interested only on the final results. The job request is just
to run the simulation on a single machine with a supplied set of data. Further,
assume that the service is provided free of charge. Functionally, following
sequence of operations will take place:

1

2

3

4

5

The generic Grid platform announces the service availability (through
UDDI).

An interested client forwards the job description request to the platform.

The SM/CME part of the platform will analyses the job description. The
job description will see that that there are no proprietary features and
all features to be available inside the platform. The request is positively
acknowledged.

Having accepted the job, the SM/CME should authenticate the user and
authorise the job for further manipulation. SM/CME loads the “AAA”
service is available and forwards the request and obtains the response
before proceeding further.

The policy component need to be loaded and consulted to determine the
operational policy, if there are any, to be applied.

Towards Building a Generic Grid Services Platform 51

6

7

8

9

Once the job is authenticated and authorised, the SM/CME builds a list
of resources and features and builds the interaction and dependency map
between components or services. In this case, the resource requirements
are rather minimal.

This in turn requires a consultation with the resource reservation. This
necessitates the launching of resource management service which along
with the discovery, brokers the requests.

In case of reservation is favoured, the SM/CME updates the job status
and continues further with the other operations that does not break the
dependency or it waits until it is indicated that the resources are available.

10

11

12

13

14

If the advance reservation was done, then the SM/CME also delegates the
provisioning and management tasks to the resource management com-
ponent.

The SM/CME is notified about the resource availability.

The SM/CME deploys the data and code on the target machine, by in-
voking the data management engine.

The actual task servicing begins.

The SM/CME is notified when the execution finishes.

Execution Terminates, modules are unloaded one by one, and the result
is forwarded to the client.

4.1.3 Operation Diagram. Figure 2 shows a very generalized operation
diagram of the platform. All Grid services start with the service announcement,
which is step 1 in our operational examples. Following the service announce-
ment, the platform may receive number of job submissions along with the job
description. This is step 2 in our operational examples. These job descrip-
tions are analysed, authenticated in conjunction with the policy database and
accounts database, whichever applicable. Steps 3, 4, and 5 in our operational
examples correspond to this. If this operation fails for a reason or another (such
as authentication failure), the job submission system (or user) is notified of the
failure. If it succeeds, the platform compiles the list of resources, reserves/allo-
cates them for the considered job submission. This requires consultation with
the resource reservation system and with the resource discover system. Some of
these resources may be secured from remote sites. The step also constructions
an action and interaction plan, preparing the task for execution. This corre-
sponds to steps 6-16 in the the first example and 6-11 in the second example.
Any failure in any of these operation will result in termination of job processing

52 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 2. Generalized operation diagram of the generic Grid platform.

and status of the job is updated. If everything goes well, the actual task servicing
begins and this involves component or service invocations and the task will run
to termination and status of the job is updated. Thus, the platform dynamically
demands and manipulates components as required by the description of each
submitted job.

4.2 Advanced Features
From the above examples, it is clear that constantly loading and retaining all

the services and features in the platform is not optimal. This is especially true
with the case of offering the Grid services in a “plug-and-go” fashion, where
there will be large number of small tasks or less demanding applications.

Towards Building a Generic Grid Services Platform 53

The design and engineering of the generic Grid platform should encompass
adaptivity and intelligence. We have not stated this very clearly until this point.
The reason for such a delayed introduction of engineering philosophy is to make
the cases and requirements very clear.

The engineering of this platform can no longer track the traditional tech-
niques, where the system behaves in a predicted pattern. Instead, the platform
should be intelligent and should adapt itself to the changing conditions. These
are:

1 As with the case of where applications or customers using their own ser-
vices (or nominates their service providers), the SM/CME should be able
to delegate the operation with those foreign components. This introduces,
tremendous amount of freedom and flexibility in the Grid environment.
Keeping aside the issue of trust and security, the main challenging issue
is the delegation phase. The components inside the Grid system, should
adapt themselves (at least to certain extent) to match the interaction with
those foreign components.

2 The current state of the Grid system should be taken into consideration by
these components. For instance, a pricing component should change the
pricing strategy it is using when the system cannot meet the estimated
target timing. Similarly, other components need to adapt and re-wire
themselves according to the current state.

Another example is, one component is forced to adapt itself due to a
change or adaptation occurring in another component.

3 Next generation application software will be adaptive in nature. This
entails that the platform it is relying on also to be adaptive.

4.3 Relevant and Necessary Software Technologies
Section 4.1 has demonstrated the operational principles of the generic Grid

platform and the fact that fixed functionality infrastructure would render the
Grid platform to be unsuitable for future generation. Most of the software
technologies required for engineering the generic Grid platform are readily
available for us. This includes Jini [18] for resource discovery, WSDL [6] for
service descriptions and so on. The most demanding aspect is the way in
which the components have to be built. As illustrated above, the platform is
adaptive and requires the components to be adaptive too for effective operations.
With this requirement, the interface of service components can vary during the
runtime and the SME should be able to understand the interface in order to
initiate the interaction. This would not be possible, unless either the SME
adapts the interface presented in the Feature Knowledge Set to the new set of

54 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

interfaces announced, or the component itself changes the interface as dictated
by the SME.

In a flexible Grid environment, services should be adaptive and the engine
should be able to adapt to the current situation, without compromising the
security. Such a requirement, where the component interfaces change while
they evolve presents us a challenge of interface morphing and/or with the need
for dynamically reconfiguring software components [3]. This is well beyond
what is offered by Jini [18] or the multi-paradigm frameworks discussed in [12].
However, the techniques for adaptive and customisable software components
discussed in [15, 1, 2] can also be applied here. Those approaches tend to
provide the necessary level of adaptability required by emerging applications
and components such as the one we have outlined above.

5. Conclusions and Directions for Further Research
The design philosophy described in this chapter still needs to be checked

carefully against the available software technologies in order to continue with
the next phase – a much more detailed consideration aiming at the development
and implementation of a first generic Grid platform prototype. A number of
interesting and important issues which need to be addressed in preparation for
this next phase include:

The list of features made available in the feature knowledge set needs to
be optimised.

The proposed design may or may not render the existing protocols and
software technologies obsolete. For example, the adaptive nature of the
platform requires much smarter discovery protocols. We need to in-
vestigate the possible side effects that this feature can have on other
components and on the overall design and operation of the platform.

The adaptive nature of components demands more on the software tech-
nology side. For instance, inter-component dependency analysis is a
critical part of the adaptive concept. Cross component interaction opens
up lots of questions for research, such as cross-component optimisation,
security and trust issues to be enforced by the Grid platform.

The choice of customers or applications providing their own components
involve additional challenges. In essence, the platform is provided with
a component, which it has never seen. As mentioned in Section 4, this
requires dynamic reconfiguration and interface morphing of the compo-
nents. Related works mentioned in Section 4.3 are not yet mature enough,
or at least their capability in addressing this problem is yet unknown.

Towards Building a Generic Grid Services Platform 55

The generic Grid services platform provides extra flexibility to the ap-
plications or to the end users by permitting them to redefine the feature
knowledge set and to update it on the fly. This requires the feature knowl-
edge part to be retained in a separate database, for example an XML file.

The service manager is a critical component of the proposed platform. We
have not looked into the details of the design aspects of this component,
and in particular how it directs the CME.

Techniques for announcing and invalidating interfaces and feature knowl-
edge sets need to be determined.

In addition to the issues mentioned above, there are clearly a lot more that
need to be addressed when designing and implementing such a platform in our
future work. At this initial stage, we have outlined a possible direction towards
building a generic Grid platform using a component-oriented approach. We
have addressed in particular the flexibility, longevity, and expandability issues
by:

identifying a core set of features which should build the permanent part
of our lightweight Grid services platform;

identifying an essential feature knowledge set, about which the platform
should be aware of;

separately plugging these components on demand in order to provide an
effective operation;

and by using the reconfigurable software technology to permit these com-
ponents to adapt themselves to the changing environment needs.

Our motivation is to continue this project and contribute to the development
of future generic Grid services infrastructures and corresponding standards.

Acknowledgments

We would like to express our special thanks to Paul Kelly at Imperial College,
London for his valuable comments on this chapter.

References

[1]

[2]

G.A. Agha. Introduction: Adaptive middleware. Communications of the ACM, 45(6):30–
32, 2002.

M. Astley, D.C. Sturman and G.A. Agha. Customizable Middleware for Modular Dis-
tributed Software: Simplifying the Development and Maintenance of Complex Distributed
Software. Communications of the ACM, 44(5):99–107, 2001.

56 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S. Bagchi, K. Whisnani, Z. Kalbarczyk and R.K. Iyer. The Chameleon Infrastructure for
Adaptive, Software Implemented Fault Tolerance. In Seventeenth IEEE Symposium on
Reliable Distributed Systems, (SRDS ’98), pages 261–270, 1998.

F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J. Hayes,
G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su, and D. Zagorodnov.
Adaptive Computing on the Grid Using AppLeS. IEEE Transactions on Parallel and
Distributed Systems, 14(4):369–382, 2003.

A. Bosworth, et al. WS-Addressing Specification. World Wide Web Consortium, 2003.
ftp://www6.software.ibm.com/software/developer/library/ws-add200403.pdf.

R. Chinnici, M. Gudgin, J.J. Moreau and S. Weerawarana. Web Services Description Lan-
guage (WSDL) 1.2. World Wide Web Consortium, 2003. ftp://www.w3.org/TR/wsdl12/.

F. Curbera, et al. Unraveling the Web Services Web: An Introduction to SOAP, WSDL,
and UDDI. IEEE Distributed Systems Online, 3(4), 2002.

K. Czajkowski, D.F. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire,
D. Snelling and S. Tuecke. From Open Grid Services Infrastructure to WS-
Resource Framework: Refactoring & Evolution, Version 1.1, March, 2004. http://www-
106.ibm.com/developerworks/library/ws-resource/ogsi_to_wsrf_1.0.pdf

K. Czajkowski, D.F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D. Snelling,
S. Tuecke and W. Vambenepe, The WS-Resource Framework, Version 1.0, March, 2004.
http://www-106.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf

I. Foster, D. Gannon, and H. Kishimoto (Eds). The Open Grid Services Architecture. GGF-
WG Draft on OGSA Spec, Version 19,2004. https://forge.gridforum.org/projects/ogsa-wg/

I. Foster, D. Gannon, H. Kishimoto, and J.J. von Reich (Eds). Open Grid Ser-
vices Architecture Use Cases. GGF-WG Draft on OGSA Use Cases 2.0, 2004.
https://forge.gridforum.org/projects/ogsa-wg/

V. Getov, G. von Laszewski, M. Philippsen, and I. Foster. Multiparadigm Communications
in Java for Grid Computing. Communications of the ACM, 44(10): 118–125, 2001.

The Globus Toolkit, http://www.globus.org/.

A. Grimshaw, A. Ferrari, G. Lindahl, and K. Holcomb. Metasystems. Communications of
the ACM,41(11):46–55, 1998.

F. Kon, F. Costa, G. Blair, and R.H. Campbell. The Case for Reflective Middleware.
Communications of the ACM, 45(6):33–38, 2002.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley,
Reading, USA, 1998.

S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman,
T. Maquire, T. Sandholm, D. Snelling and P. Vanderbilt (Eds). The Open Grid
Services Infrastructure (OGSI). GWD-R GGF-WG OGSI Spec, Version 1.0, 2003.
https://forge.gridforum.org/projects/ogsi-wg/

J. Waldo and K. Arnold. The Jini Specification (2nd edition). Jini technology series,
Addison-Wesley, Reading, USA, 2001.

A SOLUTION FOR ADAPTING LEGACY CODE AS
WEB SERVICES

Marian Bubak, and Michal Wegiel
Institute of Computer Science, AGH,
Kraków, Poland

balis@uci.agh.edu.pl

bubak@uci.agh.edu.pl
mwegiel@student.uci.agh.edu.pl

Abstract

Keywords:

This chapter presents a universal architecture for porting legacy code to Web ser-
vice environments. We provide a detailed analysis of the proposed solution and
characterize it in the context of fundamental Grid requirements. The architecture
is evaluated on the basis of such criteria like performance, security, scalabil-
ity, and fault tolerance. Our solution provides support for process migration,
checkpointing, and transactional processing. Both concurrent and asynchronous
method-invocation patterns are supported. In addition, we describe a framework
that was developed to facilitate the use of the proposed architecture. It reduces
implementation effort by automatic code generation. Finally, we present perfor-
mance evaluation results.

legacy software, Web services, Grid services, adaptation, migration, framework

58 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

1. Introduction

This chapter presents a universal architecture which can be employed when
adapting legacy applications to Web service environments. The term “Web
service”, which is extensively used in our discussion, should be interpreted
either as OGSI-compliant [12] Grid service or as WSRF-compliant [13] Web
service, associated with stateful resources. Both service types are equivalent in
terms of the offered capabilities and there is a straightforward mapping between
the concepts on which they are based.

We provide a thorough analysis of the proposed solution and assess its charac-
teristics from different perspectives. In particular, the architecture is confronted
with fundamental Grid requirements [5], i.e. performance, security, scalability,
and fault-tolerance. We also describe a framework which was developed in
order to facilitate the implementation of our solution. It comprises a set of tools
which allow for automatic code generation. Finally, we provide a performance
evaluation of the presented architecture.

This chapter presents the most recent stage of evolution of our solution.
Earlier versions thereof are described in [1–2].

2. Related Work

The issue of adaptation of legacy software to Web service platforms is grad-
ually gaining interest both in scientific and commercial settings. However,
presently no comprehensive solutions addressing this area are available. Exist-
ing approaches possess numerous limitations and offer poor versatility.

In [9] a proposal of a semi-automatic technique for conversion of legacy C
interfaces to their Java equivalents is presented. Two auxiliary tools: JACAW
(JAva-C Automatic Wrapper) and MEDLI (MEdiation of Data and Legacy code
Interface) are introduced which allow for code wrapping and data mapping,
respectively. They employ the Java Native Interface and therefore are restricted
to configurations in which legacy applications are located on the same machine
as the service container. This solution is also unsafe due to the fact that legacy
code is executed within the same operating system process as the container’s
virtual machine. For example, errors present in a legacy library can manifest
themselves by crashing the whole runtime environment.

In [10] a conceptual architecture for adaptation of legacy applications to Web
service environments is presented. Three components constitute the essence of
the proposed solution: Web service containers, Web service adaptors and back-
end legacy servers. Each Web service is equipped with an adaptor which is
responsible for connecting to the appropriate backend server on behalf of the
clients. The role of adaptors is to hide the complexity of calling backend func-
tions which typically involves communication through proprietary protocols.
The most important disadvantage of this approach is its inherent insecurity.

A Solution for Adapting Legacy Code as Web Services 59

Each backendfor example server demands an open port on which it can listen
to the client requests. In complex installations this may introduce serious se-
curity vulnerabilities. Another drawback connected with this architecture is its
inflexibility. Service adaptors have to be configured statically with regard to the
locations of the corresponding backend servers so that the communication can
be established. In consequence the infrastructure cannot tolerate process migra-
tion between computing nodes and thereby lacks such features like automatic
load-balancing and fail-over.

Recently, in [6]an approach to wrapping legacy applications as components
based on using the factory pattern was presented. The user provides a script
that can execute the application and an XML file that describes the application
and the input parameters. It also addresses the security issue.

Our approach allows to overcome the limitations of the above-described
solutions.

3. Architecture
We propose a three-tier, client-server architecture in which three main com-

ponents can be distinguished: the Service Requestor (further also referred to
as the Client), the Runtime Environment and the Legacy System. They are
potentially hosted on different machines. Communication between Service
Requestor and Legacy System is mediated by services deployed within the
Runtime Environment. Fig. 1 depicts the configuration for a single legacy
application exposed as a Web service. It shows the relationships between indi-
vidual entities along with their cardinalities.

3.1 Service Requestor
Cooperation with Legacy Systems is fully transparent. From the client’s per-

spective, only two Web services are interesting, namely Factory and Instance,
and the other ones are not accessible. Service requestors are expected to follow
a specific interaction pattern. Each client shall create its own Instance before
any operations are invoked. This task is realized with the help of a Factory.
When processing is finished, no longer needed Instances will be destroyed.

3.2 Legacy System
The legacy system constitutes an environment in which the legacy software

is executed. This component plays a crucial role in our architecture since it
is responsible for actual request processing. In order to enhance performance
and scalability and to improve reliability and fault-tolerance we may install
several redundant copies of a single legacy application on different comput-
ing nodes, possibly in various geographic locations. For this reason, we can
end up with multiple legacy systems associated with a particular Web service.

60 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 1. Proposed architecture

They collectively can be thought of as a dynamic pool of available processing
resources.

The central concept that we propose is that legacy systems do not operate
as network servers, but they are designed to behave as Web service clients.
They receive requests and deliver responses by calling dedicated Web service
operations. This considerably enhances security and makes process migration
feasible.

In the context of a particular Web service, a legacy system comprises three
types of processes which are: Master, Slave and Monitor.

3.2.1 Master. The master process is a one-per-host, permanent entity. Its
primary responsibility is the legacy system registration. Whenever the load of
the machine on which the master process is executed allows to serve a new client,
the master process reports this fact by calling the registry service. Along with
this invocation, the estimated processing capabilities and validity timestamp
are provided. The call blocks the master process until the specified time limit
expires or one of the clients is assigned. In the latter case, the master process
spawns new slave and monitor processes which take over further serving of the
newly assigned client.

A Solution for Adapting Legacy Code as Web Services 61

3.2.2 Slave. The slave process is a transient entity, always associated with
a certain client. Its lifetime is limited to the period during which the client inter-
acts with the Web service. The number of concurrently running slave processes
is changing as clients come and go. Slave processes are in charge of direct
cooperation with the legacy software. This can range from invoking functions
from local system libraries to network communication over proprietary pro-
tocols. Slave processes are responsible for retrieving client calls, translating
them to the legacy interface, performing actual processing, and delivering the
obtained results. This is achieved by means of blocking invocations of methods
belonging to the proxy instance interface.

3.2.3 Monitor. Each monitor process is associated with a certain slave
process (one-to-one relationship). The monitor is responsible for generating a
heartbeat signal and it repetitively calls a special method on the corresponding
proxy instance. This allows to:

assure both sides that the network connection is working,

inform the proxy instance about the current status of the slave process,

cancel the execution of the slave process at any time.

To show the functionality of the monitor process let us consider the most typical
failure scenarios:

connection is broken – in this case the monitor terminates the slave pro-
cess which otherwise would continue to use system resources until request
processing is finished,

slave process crashes – in this case the monitor informs the proxy in-
stance about this fact which otherwise would have to wait until request
processing times out.

The justification for making the monitor a separate process is as follows:

Slave processes execute legacy code which can contain errors leading to
abnormal process termination or even non-termination. The detection of
such situations has to be delegated to another process.

In order to make the design elegant and the implementation cleaner we
separate processes which fulfill different roles. Moreover, merging mas-
ter and monitor processes would result in a multi-threaded process which
could unnecessarily complicate the implementation.

62 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

3.2.4 Middleware. An important issue is how our architecture relates
to the job submission mechanism and resource brokering facilities developed
along with the Grid infrastructure. We employ job submission in order to
manage the pool of available master processes. Whenever the number of con-
currently connected clients causes that processing capabilities of currently reg-
istered master processes become insufficient, a new master process is created.
This is accomplished via job submission. Similarly, when there is a significant
decrease in the load, one or more chosen master processes are terminated. Thus
we fully employ the available Grid middleware. In fact we build on top of the
job submission facility in order to provide additional, higher-level functionality.
Basic job submission mechanisms allow to execute the specified program for
the given input data (batch mode). This is not exactly what we need since we
require a conversational interaction with the process that is executed and which
potentially maintains internal state.

The main reason for the existence of master processes is enhanced perfor-
mance. Job submission mechanisms are much slower than spawning a new
slave or monitor process. Submitting each separate process via a resource bro-
ker would be suboptimal in terms of overhead. Another argument supporting
master processes is the possibility to bypass job submission altogether. In small
intra-Grid environments, it may prove sufficient to maintain a static configu-
ration in which selected hosts run master processes permanently (for example,
they can be started by system scripts when a machine is booted).

One remaining point is why we do not employ notifications instead of block-
ing interaction with registry and proxy instances. Processes executed within
a legacy system could subscribe to notifications instead of repetitive blocking
on synchronous invocations. However, the problem related to this approach is
that, according to its specification, a notification sink is required to expose a net-
work accessible endpoint. In consequence, legacy systems would have to allow
incoming connections in their ephemeral port range and in fact act as servers.
This can prove problematic in case of pre-configured firewalls. Moreover, open
ports pose a vulnerability that cannot be accepted when security-sensitive appli-
cations are used. Another argument against notifications is that they effectively
disable process migration. Processes which listen on a specific network socket
cannot be transparently moved to a machine with a different network identity.
Our approach is free of both these limitations.

3.3 Runtime Environment
The runtime environment maintains a collection of Web services that encap-

sulate the interaction details with the legacy systems. For each legacy applica-
tion, there are three permanent services deployed: a registry, a factory and a
proxy factory. Depending on the number of simultaneously served clients the

A Solution for Adapting Legacy Code as Web Services 63

number of transient services varies, namely instance and proxy instance ser-
vices, which are in one-to-one relationship. Transient services are instantiated
by the corresponding factories and are owned by their creators.

Access to all services is granted on the basis of authentication and autho-
rization procedures. Only entities holding adequate identities can invoke a
particular operation. In case of internally used services, namely registry, proxy
factory and proxy instance, host certificates are employed. For the remaining
services, namely factory and instance, user certificates are engaged. Service
requestors can access only those instances that they own.

The registry Web service is responsible for controlling the one-to-one map-
ping between service requestors and legacy systems. It provides the interface
that can be employed to:

assign one of the registered legacy systems to a pending client,

advertise that the legacy system is ready to process requests.

The registry maintains a priority queue in which volunteering legacy systems
are remembered and sorted according to their processing capabilities. This
criterion decides which legacy systems and in which order will be assigned
to the consecutively appearing clients. When in a particular point in time no
master processes are available, an error is returned to a client that tries to create
a new instance.

Apart from the registry, we distinguish between two types of services: or-
dinary and proxy ones. The former are used by clients whereas the latter are
designed for internal purposes. The aim of this separation is to achieve a higher
degree of transparency. Ordinary services contain only those methods that are
interesting to the clients. The proxy instance is the main contact point with
legacy systems. Its methods are called by slave and monitor processes. The
instance service is forwarding client requests to the associated proxy instance.

4. Scenarios

There are several independent scenarios that can be handled by our architec-
ture under various circumstances. They can be divided in two classes, depending
on whether they originate from the client side or the legacy system side.

4.1 Client Side

Fig. 2 presents a diagram that schematically illustrates client side scenarios.
All of them are triggered by client requests.

4.1.1 Instance Construction. The instance construction scenario in-
volves two major steps: creation of the associated proxy instance and assign-
ment of one of the registered master processes. It is executed in response to a

64 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 2. Client side scenarios

create request sent to the factory service. This scenario is in principle based
on the mechanism of lifetime management callbacks which enables to execute
custom actions upon service construction. As shown in the diagram, three per-
manent Web services, namely factory, proxy factory and registry, are engaged in
the whole procedure. Upon successful completion, two transient Web services
are created: instance and proxy instance. They can be treated as an exclusive
property of a particular client. In addition, one of the available legacy sys-
tems is assigned. It will intercept client requests, and deliver the corresponding
responses.

4.1.2 Operation Invocation. Whenever a client invokes a particular
method, full description thereof together with the passed parameters is for-
warded to the proxy instance. If synchronous invocation mode is used, the
client is blocked and waits until the legacy system delivers the response. In
case of asynchronous mode, the call returns immediately and the results are
sent later by means of a notification message. Efficient method invocation is
crucial to the system performance because it is the most frequently occurring
event. Communication between the instance and its proxy instance takes place
within a single runtime environment so it is unlikely to pose a bottleneck. The
main source of overhead is the cooperation with the legacy systems.

4.1.3 Instance Destruction. The Destruction scenario can be triggered
either by an explicit client request or by the runtime environment when the

A Solution for Adapting Legacy Code as Web Services 65

instance’s time to live expires. In both cases we rely on lifetime management
callbacks. They are employed to send destruction request to the associated
proxy instance so that both services are deleted simultaneously.

4.2 Legacy System Side

Fig. 3 presents an interaction diagram for the legacy system side scenarios.
For simplicity, we assume that there is already exactly one master process
registered (details of its creation, manually or via a job submission mechanism
were omitted). The legacy system side scenarios take place automatically and
are beyond the control of Web service clients.

Figure 3. Legacy system side scenarios

4.2.1 Client Assignment. As we discussed earlier, a master process repet-
itively offers its participation in processing by calling the registry service. When
a particular offer is accepted, the invocation returns the endpoint address of the
assigned proxy instance. Following this, the master process spawns a monitor
process which in turn creates a new slave process. Next, the master process
checks whether it can serve one more client, accordingly adjusts the estimation
of its processing capabilities and either continues volunteering or waits until
the machine load decreases.

4.2.2 Request Processing. The processing of client requests is imple-
mented by two alternately repeated invocations: one collecting subsequent re-

66 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

quests and one delivering the corresponding responses. Between them, legacy
processing takes place. The slave process is solely responsible for this scenario.
In case of any communication error, the slave terminates itself. This does not,
however, take place immediately, but only when a long-lasting connection loss
is detected.

4.2.3 System Monitoring. The monitor process periodically calls the
proxy instance to report on the current status of the associated slave process.
When a connection error is detected or processing is cancelled (for instance
because of migration), a termination signal is sent to the slave process. When
the slave process exits prematurely for any other reason, the monitor process
tries to report this fact to the proxy instance and, having done that, terminates
itself. This allows for automatic re-claiming of resources, should any error
occur.

5. Invocation Patterns
Most commonly, the legacy interface comprises operations intended for s yn-

chronous, single-threaded execution. Such methods run in isolation and block
the caller until processing is finished. The main advantage of this approach is
that no concurrency-control scheme is required. However, there are situations
in which it is necessary or desired to invoke operations asynchronously, or to
execute a number of methods in parallel.

5.1 Asynchronous Invocation
The asynchronous execution mode allows the invoked method to return im-

mediately without blocking the calling thread. The actual processing is per-
formed in the background and the results are delivered by means of a signaling
mechanism. In the meantime the caller can concentrate on other tasks. In our
framework, asynchronous method invocation is supported and implemented on
the top of notification facility. Requestors can interact with the selected meth-
ods according to the notification source/sink design pattern. The only change in
the generated code for enabling this feature is necessary for the instance and the
proxy instance services. The protocol for cooperation with the legacy systems
is not affected since it always takes place in asynchronous manner.

5.2 Concurrency
Occasionally, service requestors may need to execute several operation in-

vocations at the same time. This may be caused by two different situations:

several synchronous calls are made by concurrently running threads,

several asynchronous calls are made in short succession.

A Solution for Adapting Legacy Code as Web Services 67

Both cases introduce concurrency to the legacy code wrapper. In order to pro-
vide support for simultaneous execution of a number of methods, the slave
processes need to start a new thread for processing each client request. In
consequence, synchronization mechanisms have to be applied to avoid race
conditions caused by concurrent access to the shared data. Our framework sup-
ports the development of thread-safe code, nonetheless programmers providing
the mapping to a legacy interface that allows concurrent invocations are strongly
recommended to give serious thought to their implementation. Since parallel
method execution considerably complicates development, it is generally a good
design practice to avoid it whenever possible.

6. Process Migration

The main motivation behind automatic process migration is enhancing fault
tolerance and load balancing. These two aspects are of paramount importance
to the Grid environment. Process migration is indispensable when we need to:

dynamically offload work onto idle machines,

transparently recover from system failures.

6.1 Migration Techniques

There are two broad classes of process migration solutions: low-level and
high-level ones. The low-level approach is limited to machines with the same
architecture and can be employed only in homogenous environments (e.g. clus-
ters of workstations). This is because such process migration relies on the
transfer of binary state which includes, but is not limited to, a virtual memory
image and current contents of processor registers. Low-level migration is fully
supported in the proposed architecture as slave processes act as clients rather
than as servers. They can be moved to another machine at any time since their
network identity is not required to remain unchanged. Legacy applications are
free to take full advantage of migration capabilities present in the operating
system under control of which they are executed.

The high-level approach is in principle based on the replay of the sequence
of operations, constituting method invocation history. This can be an expensive
way of state restoration but it is applicable in heterogeneous environments. In
order to be able to re-iterate through the past operation calls we need to store
all information regarding method invocations as they come from requestors.
It seems that we should also remember the output of each executed method
so that at a later time we could compare it with the results returned by calls
issued during state reconstruction. This is essential since we must ensure that
the repeated scenario proceeds exactly like before, because when migrating we
are acting on the requestors’ behalf without their knowledge.

68 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

One of the problems with history-based state restoration is the high memory
consumption. This can be tackled by using disk storage. However, dump-
ing history into a file is a very slow operation. Therefore we should employ
buffering as much as possible.

6.2 Point of Migration

Most frequently, a migration procedure is triggered when some erroneous
state is entered. We conceptually distinguish between two types of failures:

logical errors – caused by invalid parameters supplied by the user,

system errors – caused by network malfunction or hardware crash.

An attempt to recover from a logical error by means of process migration does
not make much sense. In such circumstances, the failure cannot be masked and
its description has to be delivered to the requestor. In the proposed architecture, a
system error is recognized when the number of lost keep-alive messages exceeds
a specified limit. This phenomenon indicates that the currently assigned legacy
system cannot be contacted and another one should take over request processing.
Therefore, the registry service is invoked and upon successful re-assignment,
state restoration takes place.

Process migration might also prove to be a good solution when a legacy
system’s response time unexpectedly increases drastically. Such a situation
can be caused by a temporal peak in resource utilization. Delegating work to
another machine may help to evenly disperse the load. Putting this mechanism
into operation requires that a maximal execution time can be estimated for each
method. Moreover, it is necessary to interrupt and cancel the processing of the
currently assigned slave process. In our architecture, this can be achieved using
the monitor process which periodically invokes a heartbeat method. This call
returns a boolean value which, when set to false, tells the monitor to terminate
its subordinate slave process.

6.3 Optimizations
It is rarely necessary to remember the sequence of all operation invocations.

For instance, stateless applications can be restarted after a failure without any
concern for their history of prior interactions. Most services maintain an in-
ternal state; nevertheless, it is usually possible to apply various optimizations
concerning the amount of data that needs to be saved. For example, we may
know that execution of certain methods resets the state and allows to clear the
history. For this purpose we provide a special method in the interface of the
proxy instance which should be called whenever a given invocation sequence
can be safely discarded.

A Solution for Adapting Legacy Code as Web Services 69

In our framework, high-level process migration can also be guided by trans-
actions and checkpointing which can work both separately and in combination.

6.4 Checkpointing

Certain legacy applications support checkpointing. That means that they are
capable of periodically saving a snapshot of their state. This enables efficient
state restoration after process restart. Our framework provides facilities for ex-
ploiting checkpointing mechanisms if they are available. A dedicated interface
is implemented for this purpose. It is accessible only on the legacy system side
and allows:

saving the current state snapshot,

retrieving the most recently saved state.

We assume that legacy applications are able to represent their state in the
form of a string. State snapshot is stored on the container side (possibly on
disk) and its contents are not interpreted in any way. It is a recommended
practice to check whether any valid state dump is available when an application
starts. This allows to eliminate the need for slow state reconstruction based on
invocation history. For this solution to work properly, applications are required
to provide state snapshots regularly, whenever they undergo a major change in
state, especially if they are computationally expensive.

It is noteworthy that checkpointing itself does not eliminate the need for
history-based state restoration. This is because system failure may occur be-
tween subsequent checkpoints, when some invocations following last check-
point are already made. In such a situation, in order to keep the migration
transparent, it is necessary to load the latest state snapshot and then to repeat
the remaining short sequence of method calls. For this reason, checkpointing
cannot work properly in isolation and needs to be combined with the technique
of method invocation replay.

6.5 Transactions
Legacy systems that operate in a transactional fashion require special as-

sistance from our framework. This is particularly important in the context of
process migration. A sequence of operations constituting a single transaction is
by definition atomic. In the event of transaction failure, none of its components
should have any effect. This implies that aborted transactions do not affect
system state and, in consequence, should be discarded during state restoration
that takes place upon migration.

Our framework provides operations for starting, committing and aborting
transactions. The transaction management methods are present in the interface
of instance. A collection of operations that form a single logical unit of work

70 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

should be surrounded by appropriate invocations. When no explicit transaction
is started, it is assumed that each operation constitutes a separate transaction
which is auto-committed upon successful completion. If method invocation
fails for some reason, the currently executed transaction is marked as aborted.
Only committed transactions are recorded. Aborted ones are excluded from
invocation history since they introduce no change in state.

7. General Properties

The proposed architecture satisfies the requirements that ought to be met in
Grid environments. It possesses many desirable features as discussed below.

7.1 Security
There are two aspects concerning the security of our solution:

it is not necessary to introduce open incoming ports on the machines
where legacy software resides,

it is possible to authenticate the machines with which we cooperate and
verify that the processing is delegated only to trusted nodes.

Both these advantages are due to the fact that processes executed within legacy
systems act as clients rather than servers. We rely on the security infrastructure
provided by the given runtime environment. Thus, depending on the partic-
ular application, various security mechanisms can be used. By default, we
perform authentication and authorization procedures. If needed, communica-
tion integrity and privacy can be ensured by means of digital signatures and
encryption, respectively.

In our architecture, the security configuration can be thought of as two lists
of identities:

for clients that are entitled to use our service, and,

for hosts that are permitted to register in the context of our service.

In consequence, maintenance of security policies should not involve much ad-
ministrative effort.

7.2 Scalability
The combination of several factors contributes to good scalability of our

architecture:

Processing is highly distributed since all tasks are delegated to legacy
systems.

A Solution for Adapting Legacy Code as Web Services 71

Services deployed within the runtime environment do not consume much
resources as their activity is restricted to message forwarding.

Job submission mechanisms are employed which enable dynamic re-
source allocation in response to unexpected changes in utilization.

Automatic load balancing is ensured by master processes advertising
processing capabilities of the machines on which they are executed.

7.3 Fault Tolerance

The proposed architecture offers a high degree of immunity to component
failures for the following reasons:

Both low-level and high-level process migration are supported.

Monitor processes generate heartbeat signals, which enables fast detec-
tion of failures.

Support for checkpointing enables fast state restoration.

Support for transactions allows recovery from uncommitted operations.

A registration model is used that enhances responsiveness to sudden
changes of configuration.

7.4 Versatility

An important advantage of our architecture is the fact that we make no as-
sumptions regarding programming language or platform on which its individ-
ual components are based. Our solution is universal enough to accommodate
a variety of legacy systems and runtime environment implementations. Fur-
thermore, legacy software can remain in the same place where it was initially
installed. There is no necessity of moving programs between machines or
changing their configuration. No modifications of legacy code are required
(non-intrusiveness). The net effect is that our architecture can be applied in a
wide range of different adaptation scenarios.

8. Implementation

We have developed a framework comprising a collection of Java tools fa-
cilitating the adaptation of legacy C/C++ applications to the proposed archi-
tecture. At present, only OGSI-compliant services are supported since we
employ Globus Toolkit 3.2 [7]. We plan to migrate to WSRF as soon as its first
implementation becomes available. The core functionality provided by our
framework can be described by its typical use case, which is presented below.

72 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

1

2

3

4

A developer specifies the Java interface that will be exposed by the de-
ployed service. In case of complex data structures this may also involve
definition of accompanying Java classes. Usually, the provided interface
mirrors or at least resembles its legacy equivalent.

Source code generation takes place. This includes the creation of Java
and C++ classes as well as the required deployment descriptors and build
scripts. Developers can override default settings in order to customize
aspects like concurrency or transactional mode.

The developer provides the implementation for methods comprising the
generated C++ interface (which effectively is the translation of the ear-
lier specified Java interface) in order to define the mapping to the legacy
interface. This is the only phase which may involve development effort.
However, unless legacy and service interfaces differ considerably or con-
current method invocation is enabled, this task should be straightforward.

Auto-generated build scripts take care of building a deployable package
and compiling C++ sources to executable programs.

In our current implementation we employ gSOAP 2.4 [8]. Operation invo-
cations performed by service requestors are forwarded to the legacy systems in
a serialized form. This allows us to uniformly treat all methods regardless of
their formal parameters and returned values. A special data format was devised
for this purpose.

When designing our framework we have put particular emphasis on two
aspects:

universality, so that a wide range of different legacy applications is sup-
ported,

ease of use, so that developers have to concentrate only on the most
important things.

Since these aims are often in conflict, we had to make many tradeoffs. One
of the test cases for the framework implementation which is worth mentioning
was the adaptation of the OCM-G [4] Grid application monitoring system to
Globus Toolkit 3.0. The OCM-G works in an event-driven manner, therefore
an asynchronous, concurrent programming model had to be employed.

A prototype version of our framework (having about 4000 lines of code in
Java and C++) offers support for most features of our architecture (including
process migration, transactions and checkpointing). The remaining function-
ality is successively added. Currently, our work is primarily focusing on three
aspects:

development of additional test cases,

A Solution for Adapting Legacy Code as Web Services 73

refactoring of current implementation,

providing more complete support for our architecture.

9. Performance Evaluation

In order to estimate the communication overhead introduced by our architec-
ture, we conducted an experiment which aimed at comparing the performance
of two Web services, one of which was dependent on a legacy system. They both
offered the same functionality as seen from the client perspective. Specifically,
each service was exposing a single operation which was returning the length of
the string passed on as its parameter. Construction and destruction scenarios
were excluded from the measurement because they are always executed once
as opposed to potential multiple method invocations.

We used the metrics of bandwidth and latency. Transmission time depends
linearly on the message length and is given by the following formula:

where the two above-mentioned quantities are constants.
The experiments were carried out on a single-processor IA-32 machine run-

ning the Linux operating system which simultaneously hosted all three compo-
nents of our architecture. No security mechanism was employed, i.e. neither
authentication nor authorization was performed. In consequence, the obtained
results reflect the overhead introduced solely by our architecture. The influence
of different security mechanisms on efficiency of Globus I/O is characterized
in [3]. All tests were performed on the client side.

We measured the time needed to execute a single operation call for data
payload ranging from 0kB to 50kB (with the granularity of 1kB). For each
message length, we calculated an average method execution time on the basis
of a series consisting of 100 consecutive invocations (Gaussian distribution was
assumed). The obtained measurement results are presented in Fig. 4. There,
the ordinary service is the one which is independent of legacy systems.

The calculated values of parameters are listed in Tab. 1. We can expect
around 2.5-fold increase in transmission time when a Web service is backed up

74 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 4. Measurement results for method invocation scenario

by a legacy system. This stems from the fact that in case of a legacy service each
method call needs to be first forwarded to the proxy instance and then to the
legacy system. Such overhead is, however, perfectly tolerable for applications
in which communication does not dominate computations.

10. Conclusion and Future Work

In this chapter we have discussed the techniques of migration from legacy
software to Web service environments. A proposal for a versatile solution
compliant with Grid requirements was presented.

We have shown how to implement our architecture on top of available Grid
middleware. Moreover, we presented our first experiences with a framework,
the prototype of which has been developed. We proved that despite the rela-
tive complexity of the proposed architecture, developers employing our frame-
work can readily adapt their C/C++ software to our Web services platform.
We evaluated the communication overhead introduced by our architecture, and
demonstrated the obtained experimental results. We drew a conclusion that this
overhead is tolerable in case of computationally intensive applications.

We intend to continue the development of the presented architecture and add
support for:

redundant parallel processing (multiple legacy systems are assigned to
the same task in order to improve reliability),

A Solution for Adapting Legacy Code as Web Services 75

early process migration (migration is started in advance when quality of
service begins to decrease so that in the event of failure state restoration
can be accomplished faster),

real-time processing (method invocations are queued according to their
priorites).

The implementation of the framework is planned to follow the appearing ar-
chitectural extensions. More information about this research is available at our
project Web page [11].

Acknowledgments. This research is partly funded by the European Com-
mission IST-2001-32 243 Project “CrossGrid” and the Polish Committee for
Scientific Research SPUBM 112/E-356/SPB/5.PR UE/DZ224/2002-2004.

References
M. Bubak, and Migration from Legacy Software to Grid Services.

Proc. Third Cracow Grid Workshop, Cracow, Poland, 2003, pp. 254–266.

M. Bubak, and Adaptation of Legacy Software to Grid Services.
Proc. International Conference on Computational Science 2004, Cracow, Poland, Springer
LNCS 3038, pp. 26–33.

[1]

[2]

[3]

[4]

M. Bubak, T. Szepieniec, and R. Wismüller: Two Aspects of Security
Solution for Distributed Systems in the Grid on the Example of OCM-G. Proc. Third
Cracow Grid Workshop, Cracow, Poland, 2003, pp. 197–206.

M. Bubak, W. Funika, T. Szczepieniec, and R. Wismüller: Monitoring Grid Appli-
cations with Grid-enabled OMIS Monitor. Proc. First European Across Grids Conference,
Santiago de Compostela, Spain, February 2003, Springer LNCS 2970, pp. 230–239.

[5]

[6]

I. Foster, C. Kesselman, J. Nick, and S. Tuecke: The Physiology of the Grid. An Open
Grid Service Architecture for Distributed Systems Integration.
http://www.globus.org/research/papers/ogsa.pdf

D. Gannon, S. Krishnan, A. Slominski, G. Kandaswamy, and L. Fang: Building Appli-
cations from a Web Service Based Component Architecture. In: Component Models and
Systems for Grid Applications, pp. 3–17, Springer, 2004.

[7]

[8]

[9]

Globus Project: http://www.globus.org

gSOAP Project: http://www.cs.fsu.edu/~engelen/soap.html

Y. Huang, I. Taylor, D. Walker, and R. Davies: Wrapping Legacy Codes for Grid-Based
Applications. Proc. International HIPS Workshop, Nice, France, 2003.
http://www.cs.cf.ac.uk/user/I.J.Taylor/CV/Papers/MedliHIPS2003.pdf

[10]

[11]

[12]

[13]

D. Kuebler, and W. Eibach: Adapting Legacy Applications as Web Services, IBM Tech-
nical Report.
http://www-106.ibm.com/developerworks/webservices/library/ws-legacy/

LGF – Legacy to Grid adaptation Framework: http://www.icsr.agh.edu.pl/lgf/

Open Grid Services Infrastructure: http://www.gridforum.org/ogsi-wg/

Web Services Resource Framework: http://www-fp.globus.org/wsrf/

II

MIDDLEWARE ARCHITECTURE

A GRAPHICAL MODELING ENVIRONMENT
FOR THE GENERATION OF WORKFLOWS
FOR THE GLOBUS TOOLKIT

Francisco Hernández, Purushotham Bangalore, Jeff Gray, and Kevin Reilly
Department of Computer and Information Sciences,
University of Alabama at Birmingham,
Birmingham, AL, USA

hernandf@cis.uab.edu
puri@cis.uab.edu
gray@cis.uab.edu
reilly@cis.uab.edu

Abstract Grid computing aims at managing resources in a heterogeneous distributed en-
vironment. The Globus Toolkit provides a set of components that can be used
to build Grid-enabled applications. Presently, applications are typically hand-
crafted either by using a set of command line interfaces, or by using a set of Java
packages provided by the Java CoG Kit. The purpose of this work is to introduce
a high-level layer that abstracts and simplifies the development of applications
within the Globus Toolkit context by creating graphical workflows of applications
using domain-specific modeling techniques.

The expected impact of this effort is a reduction of the development time
involved in generating applications for the Globus Toolkit. An additional ad-
vantage is to provide a high level view for the construction of Grid applications
using the Globus Toolkit that avoids some of the intricacies documented for
other approaches. Furthermore, the concepts introduced in this chapter can be
employed not only in the context of the Globus Toolkit but with other component
frameworks..

Keywords: domain specific modeling, workflows, Globus toolkit, Java CoG kit, code gener-
ators, visual authoring tools, automatic programming, software engineering

80 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

1. Introduction
The Globus Toolkit [13] is the de facto standard for building Grid-enabled

applications. A user can choose three different approaches to construct such
applications: (1) utilize a command-line, (2) exploit a C [25] API, or (3) employ
a commodity toolkit such as the Java CoG Kit [32]. All of these approaches
require an in depth understanding of the underlying technologies involved in
constructing Grid applications. This limits the use of the Toolkit to those who
are knowledgeable about the intricacies of these technologies. Traditionally,
Problem Solving Environments (PSE) or portals [28] have been developed to
ease the construction of Grid applications. PSE’s provide a high-level view for
specifying Grid-enabled applications and rely on middleware to connect with
the Grid component resources [14]. This kind of tool expedites simple tasks
(e.g., simple job submissions, and checking the status of a previously submitted
job), but it lacks the flexibility to define a complex sequence of tasks.

Workflows have gained increasing attention for their application in compos-
ing a flow of tasks in a Grid environment [33]. Workflows describe the execution
of complex applications built from individual application components, which
is similar to the process used to construct applications using the Globus Toolkit.
Previous workflow studies vary in complexity, ranging from the use of artifi-
cial intelligence to handle the automatic creation of workflows [9, 34], to the
specification of grid flows using an XML file [6, 12, 31].

Pegasus [9], and GridAnt [31] deserve special attention because they can
be considered the endpoints of workflow approaches. Pegasus uses complex
artificial intelligence planning techniques to generate automatically resource
mappings and tasks according to application goals. GridAnt, on the other hand
uses the Apache ANT tool [5] as a basis for its workflow engine. Although these
two tools offer a viable solution to the workflow specification, they are rather
difficult to use for a new Grid user. The level of technological complexity in
Pegasus and the XML input requirement in GridAnt make it difficult to specify
the workflow.

A solution is needed that removes these accidental complexities of use and
embeds experimental knowledge of the domain into a code generator that can
generate the complex configurations. Such a technology exists in the area of
domain-specific modeling [21]. With this technology, a user focuses on higher
levels of abstraction at the problem space and is able to avoid low-level details,
such as Grid services and their usage.

The approach used in this chapter is based on the concept that the develop-
ment of Grid enabled applications can be improved by mapping the different
Globus components into entities of a graphical model. The graphical models
compose a high-level layer that abstracts and simplifies the development of
Grid applications by providing all the capabilities of Globus but hiding all the

A Graphical Workflow Modeling Environment for the Globus Toolkit 81

low-level implementation details. The mapping between Globus components
and the graphical models is performed by using concepts of domain-specific
modeling that utilizes the interfaces provided by the Java CoG Kit. By combin-
ing these graphical entities, a particular application workflow can be generated
into the Java [19] code that utilizes the Java CoG Kit API. Three research issues
are exploited in this chapter:

1 The creation of a meta-model that maps the Globus Toolkit’s components
to a graphical model. This meta-model defines the language used to
construct workflow models.

2 The generation of graphical workflows between the different tasks of the
application through the use of the meta-model.

3 The generation of Java programs from the graphical workflows. This is
realized by using a model interpreter that traverses the graphical work-
flows and generates a program that manages the application execution.

The techniques presented in this chapter abstract the component model in
an independent way. Such techniques can be applied to different component
frameworks. By creating different model interpreters, one for each compo-
nent framework, the same graphical elements can represent components from
different frameworks. These components can then be mixed and code for the
corresponding framework can be generated. The rest of the chapter is organized
as follows: Section 2 provides background on building applications with the
Globus Toolkit and Java CoG Kit; Section 3 introduces the methodology that
is used; Section 4 presents related work; Section 5 presents future work to be
explored; Section 6 offers conclusions of the present work.

2. Background
The Globus Toolkit [13] provides a common middleware that considers re-

sources as entities of a virtual organization. This facilitates the construction
of Grid applications. The middleware is formed by different components
such as the Globus Resource Allocation Management component (GRAM)
[8], and Grid Information Services (GIS) [7], which provide services to in-
tegrate distributed resources in a Grid computing environment. Creating an
application that uses this Toolkit requires the composition of several of these
components.The interaction with these components is accomplished by using
a simple interface that permits the manipulation of the underlying low level
resources. Globus does not enforce any particular programming model so dif-
ferent applications or Grid tools can be constructed using this set of components.
Furthermore, an application builder can use only the components that are re-
quired for his application and incrementally incorporate additional components
to make his application more Grid-aware.

82 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Originally, two approaches were used to generate this composition: (1) a set
of command-line tools, and (2) a C API provided by the Toolkit. With these
two approaches a user can interact with the interface provided by Globus and
manipulate the low level resources. These two approaches provide an ideal
solution for an experienced Globus programmer by allowing him to optimize
the use of the resources, but for an inexperience user this programming model
increases the complexity required to write an application. Considering the
dynamic behavior of a Grid system, both approaches are less than satisfactory
if the user is not a Globus savvy programmer [34].

One solution to this problem is to create a layer that sits on top of the compo-
nents provided by Globus. Such a layer is provided by commodity toolkits. The
Java Commodity Grid Toolkit (Java CoG Kit) was created to assist in the devel-
opment of applications using Globus Toolkit [32] services; it was a step towards
simplifying the construction of applications for the Globus Toolkit. The Java
CoG Kit helps a user navigate the intricacies of the Globus components more
easily by introducing a new programming model for the Grid. Furthermore, the
Java CoG Kit provides many utility components organized as Java Packages
that enhance the functionality of Globus. However, although the Java CoG
Kit improves the interface between users and the Globus components, even the
user who is Java savvy still needs to dedicate additional time in order to learn
how to build applications for the Globus Toolkit. A method that incorporates
these widely-used technologies in a more accessible and efficient manner can
be achieved using concepts of domain-specific modeling.

In domain-specific modeling, a design engineer creates models for a specific
domain using concepts and terminology from that domain [20]. The domain-
specific models are developed by first creating a meta-model that specifies the
ontology of the domain. The meta-model serves as a paradigm, or language, that
defines the syntax and static semantics for models of that domain; the dynamic
semantics are introduced by an interpreter that synthesizes the models into dif-
ferent representations [24] (e.g., XML configuration files or source code). The
Generic Modeling Environment (GME) [26] is a graphical tool that automates
the creation of domain-specific models. GME allows a user to create graphical
models by providing a general paradigm (i.e., language) from the meta-model
definition.

3. Methodology to Support Model-Driven Generation of
Workflows

Two actions are necessary to create domain-specific models for the Globus
Toolkit:

1 Definition of the meta-model, defining the paradigm (language) to be
used to create workflow models.

A Graphical Workflow Modeling Environment for the Globus Toolkit 83

2 Implementation of the interpreter that translates the workflow models
into corresponding Java code.

Both of these actions are implemented using GME. One of the advantages of
using GME is that it allows a modeler to define base elements that can be
reused in more complex models. This property is a major advantage because it
is possible to define elements such as resources, user credentials, file transfers
and job submission tasks only once and then reuse them in any specification of
a workflow.

The models created can then be translated into executable specifications used
to synthesize automatically various software artifacts [29]. The translation is
performed by a model interpreter that recognizes the concepts from the work-
flow language and generates the semantic actions associated with that concept.
In the following subsections, the manner in which the meta-model and its in-
terpreter are constructed is explained.

3.1 Meta-Model
The goal of the meta-model is to define a new visual language that can be

used to create specific workflow models. The design of the meta-model is based
on the experimental knowledge of the particular domain. In this case, the design
is based on the manner in which a user specifies the sequence of tasks in an
application’s workflow.

Figure 1. Workflow task specification. A workflow task consists of file transfers or job pro-
cessing tasks. These two tasks use a specific Grid resource. Resources require an authentication
mechanism provided by the user’s credentials.

Figure 1 illustrates the manner in which workflow tasks (subsequently re-
ferred to as “tasks”) are defined. The central rectangle indicates that each
resource requires an authentication method given by the user’s credentials.

84 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Rounded rectangles specify tasks consisting of file transfers and job processing.
According to the requirements specified in Figure 1, four aspects need to be
considered in defining the meta-model:

1

2

3

4

Resources for running jobs and performing file transfers, including the
specification of the credentials required to authenticate the resources.

File transfers end-points, including resource, location on resource, and
file name.

Jobs, including their resource and input parameters.

Workflows, which are a composition of the previously defined tasks.

The definition of these four aspects provides a mapping among the basic re-
quirements for constructing grid applications, the services provided by Globus,
and GME entities. The way in which these aspects are specified in the meta-
model and their corresponding use is explained in the following subsection.
Additional details can be found in [22].

3.1.1 Meta-Model Construction and Example Usage. For explanation
purposes, the meta-model can be subdivided into four different parts (Figures
2 and 3), corresponding to the aspects enumerated in the previous section. All
parts are specified using the same entities provided by GME’s general paradigm.
The distinction of the GME entities in each part is demarcated by the concept
that each entity represents in the domain, and the relationship between these
concepts.

The basic concepts in the domain are Resources, File Transfers, Jobs, and
Workflows. These are defined in the meta-model using either an (GME) Atom
or a (GME) Model entity. Model entities can contain other model entities or
atoms, but atoms are indivisible. File transfers and jobs are defined as Model
entities because they contain resources. Both of these concepts require state
information, so (GME) attributes are associated with these entities (Figure 2.b
and 3.a). For example, the definition of a job task requires the specification
of its RSL (Globus Resource Specification Language) [18] parameters (Figure
3.a).

The association between a resource and its corresponding authentication cre-
dentials is given by a (GME) connection entity. An attribute that indicates if
the resource is local or remote is associated to the Resource atom. Resources
that are remote need an authentication credential. Resources can be used either
for computation or for data storage. As typical in UML models, the triangle
of Figure 2 indicates that both kinds of resources inherit attributes and con-
nections from a basic host entity (Figure 2.a). Finally, the workflow part of
the meta-model consists of the previously defined tasks (file transfers, and job
specifications), and a start and end of workflow markers (Figure 3.b).

A Graphical Workflow Modeling Environment for the Globus Toolkit 85

Figure 2. Meta-model definition. The specification of the meta-model consists of four aspects:
resources‚ file transfers‚ jobs‚ and workflows. (a) presents the definition of resources and (b)
presents the definition of file transfers.

Using the meta-model‚ a user can define application workflows by interacting
with the graphical environment provided by GME. The following example‚

86 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 3. Meta-model definition. The specification of the meta-model consists of four aspects:
resources‚ file transfers‚ jobs‚ and workflows. (a) presents the definition of jobs and (b) presents
the definition of the workflow part of the meta-model.

presents a simple application using Hidden Markov Models to illustrate how
this interaction is performed for a typical Grid application. A Hidden Markov

A Graphical Workflow Modeling Environment for the Globus Toolkit 87

Figure 4. Model interaction. Once the meta-model is constructed‚ a user graphically defines
the basic elements of the workflow. This figure shows how resources are defined and how a user
credential authenticates the remote resources.

Model (HMM) was constructed to compare the differences between English
and Spanish language patterns [11]. The input to the HMM is an intermingled
file (parts in English and parts in Spanish) that only indicates if a letter is a vowel
or a consonant (1 or 0). The output file consists of the language prediction. The
subdivision of this application into different components and its integration in
a Grid environment is presented in the rest of this section.

The application can be subdivided into pre-processing‚ HMM‚ and post-
processing tasks. The input file is copied from the local computer to a remote
host‚ and after the execution of the application‚ the output file is copied back
to the local computer. The first step in defining the application involves the
definition of resources. Light machines are used for data storage‚ while dark
machines are used for computation purposes. Each remote resource needs to
be authenticated with the user’s credential (Figure 4). The next step is to define

88 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 5. Model interaction. Once the meta-model is constructed‚ a user graphically defines
the basic elements of the workflow: (a) shows that defining file transfers consist of specifying
the location of the files on the endpoints; (b) shows how the HMM job is defined by specifying
its RSL attributes.

the file transfers between the local computer and the remote host. In the case
of uploading a file to the remote host‚ the URL and port of the host must be
specified (Figure 5.a). Finally‚ the definition of jobs consists of the specification
of the Resource Specification Language (RSL) attributes required to run the job
(Figure 5.b).

After all of the tasks are defined‚ the application can be constructed by
specifying the required sequence of tasks (Figure 6). File images indicate file
transfers‚ and computer images indicate jobs to execute. The star in the far left

A Graphical Workflow Modeling Environment for the Globus Toolkit 89

Figure 6. Definition of the workflow in the model. This figure presents the workflow for the
example. The input file is copied to the remote host (upRawData). A pre-processing job is
executed on that file and its output is analyzed by the HMM job. The output of the HMM job
is then modified in the post-processing step. Finally the output of the post-processing job is
downloaded to the local computer (downAnalysis).

indicates the start of the workflow‚ and the sphere on the far right indicates the
end of the workflow.

Figure 7. Structure of the code generation. The interpreter traverses the workflow model
and generates a Java program that interacts with a set of adapters. Creation of RSL strings‚
specification of file transfers‚ and remote execution of jobs are the facilities provided by the
atapters. The adapters use the Java CoG Kit API to communicate with the Globus Toolkit.

90 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 8. Code generation. This code is generated by the interpreter for the HMM job
submission task.

3.2 Interpreter
After the workflow is specified‚ a model interpreter traverses the internal

representation of the model and generates the control code that manages the

A Graphical Workflow Modeling Environment for the Globus Toolkit 91

application execution. The interpreter first gathers all the information from
resources‚ jobs‚ and file transfers. This information‚ along with the specification
of the application workflow‚ constitutes the interpreter’s input. The interpreter
then executes the semantic actions associated with each workflow task. The
output of this step is a Java program that manages the application execution. The
Java program uses a set of supporting classes‚ or adapters [16]‚ implemented
to standardize the interaction with the Java CoG Kit API. The Java CoG Kit
API is used as a bridge to communicate with the enabled back-end resources
managed by the Globus Toolkit (Figure 7).

Figure 8 presents the code that is generated for the HMM job submission task.
The process presented here is repeated for each job submission and similar code
is generated. The references to the GlobusRSL on line 10 and the GRAMJob
on line 21 are the adapters that communicate with the Java CoG API. Line 7
reads the user’s proxy into a byte array. This is done to authenticate the user on
the specific resource. Lines 10 through 18 create the corresponding RSL string.
Finally‚ lines 21 through 36 submit the job to the specified resource and waits
for its completion. As can be seen in this code‚ if some problem occurs then
exceptions are caught and a corresponding message is displayed. File transfers
operate in a similar way by using a different adapter.

4. Related Work

The idea of composing applications from reusable components is not new.
For example‚ WebFlow [1] introduces a platform-independent system that dy-
namically composes new applications from reusable components by clicking
and dragging icons. The Job model of UNICORE [10] uses a set of directed
acyclic graphs‚ and also permits the use of conditional and iterative execution
of job groups or tasks. DAGMan [15] also maps a direct acyclic graph spec-
ification onto a physical environment. The Symphony framework [27] uses a
graphical user interface for rapid collaborative development of grid applica-
tions following a data flow paradigm. Triana [30] also offers a visual program-
ming model for the dynamic composition of predefined software components.
Other works propose languages to specify Grid workflows. For example‚ Grid
Workflow [6] focuses on proposing a standard for the sequence of complex
high-performance computational tasks within a Grid. GridAnt [31] uses an
XML-based language to specify client-side workflows. GridAnt is also able to
submit the executions of tasks or file transfers by using a workflow engine based
on the Apache ANT tool [5]. The construction of the workflow base aspect of
the environment has been influenced by these projects.

Hategan et al.‚ [4] proposes a technology and architecture-independent ab-
straction layer to provide interoperability across multiple Grid implementations‚
resulting in the Open Grid Computing Environment (OGCE). The main func-

92 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

tion of OGCE is to serve as a technology-independent‚ open‚ and extensible
framework for client-side Grid development. This concept is similar to the idea
presented in this chapter of using meta-models to abstract the underline Grid
technologies. Because the models and the interpreter that translates those mod-
els are two different components of the modeling environment‚ with a change in
the interpreter‚ the same models can be reused for different Grid architectures.
This is an attempt to abstract the Grid environment into a high-level layer such
that the essence of the workflow is not bound to a specific Grid environment.
Furthermore‚ the abstractions provided by OGCE are comparable to those in-
troduced in this chapter. For example‚ the task concepts presented in [4] contain
concepts similar to those involved in the job specification (Figure 2). However‚
the main difference between the studies is in the level of abstraction. In this
chapter the abstraction layer is realized at a domain-model level‚ but in [4] the
abstraction layer is at a programming language level (Java).

5. Future Directions

Work on the modeling environment is in its initial phase. The current imple-
mentation of the environment can handle only a limited number of sequential
tasks in the workflow. At present‚ the generated applications communicate
directly with the Java CoG Kit (as seen in Figure 8). This causes scalability
problems due to the generation of specific code for each workflow task. A
solution to this problem is currently under investigation and consists of devel-
oping a reusable workflow engine and generating appropriate configurations
from the graphical models. In addition to improving the scalability of the gen-
erated applications‚ current efforts are aimed at three different areas: (1) allow
parallelism of tasks in a workflow‚ (2) allow third party transfers‚ and (3) allow
the definition of hierarchical workflows. A modified meta-model that considers
these capabilities has already been implemented‚ but the corresponding inter-
preter is still in progress. Nevertheless‚ even without these capabilities‚ the
initial experience with the environment is promising. In addition to this work
in progress‚ future directions that will be considered involve four aspects:

In order to further simplify the use of the environment‚ integration with
GIS [7] is the logical next step. This integration will provide feedback to
users so they can decide which resources are more appropriate for their
applications.

1

The current trend in Grid computing is moving towards a service archi-
tecture. To make the environment capable of moving in that direction‚
future work will be focused in two aspects: (1) the utilization of web ser-
vices as workflow tasks‚ and (2) the capability of generating web services
from workflows. The latter will allow non-web service applications to
run and cooperate in a web service environment.

2

A Graphical Workflow Modeling Environment for the Globus Toolkit 93

GridAnt [31] is another tool that allows a user to specify workflows for
the Globus Toolkit. The difficulty posed by that tool is in the use of an
XML file as an input. One of the major advantages of using the approach
presented in this chapter is that more than one interpreter can be imple-
mented for a particular meta-model. Because of this‚ the environment
can serve as a front-end and by changing the interpreter‚ the required
GridAnt’s input file can be generated. The ability to generate multiple
artifacts from the same model is a key benefit of model-driven techniques
[26].

3

Currently there are different component frameworks that provide facil-
ities to create Grid enabled applications [17‚ 2‚ 3]. Future work that
is being considered involves the construction of model interpreters for
these frameworks. Having these model interpreters will allow the com-
position of Grid applications incorporating components from different
frameworks.

4

6. Conclusion
The goal of the research described in this chapter is to improve the develop-

ment of applications within the Globus Toolkit by creating graphical workflows
of applications using domain-specific modeling techniques and the Java CoG
Kit API. The benefits of using domain-specific modeling techniques which
motivated this study were:

Domain modeling removes the accidental complexities of creating work-
flows in a Grid by focusing on higher levels of abstraction at the problem
space rather than solution space‚ such as specific Grid libraries and their
usage.

When exploring various workflows scenarios‚ modeling tools and their
interpreters facilitate the more rapid ability to change the workflow de-
tails. That is‚ it is easier to manipulate and change domain models rather
than the associated code.

Model-driven techniques possess the ability to generate multiple artifacts
from the same model. Thus‚ with the same domain knowledge different
output representations can be generated.

Domain models abstract a component model in an independent way‚ such
that the specification in the models can be used with multiple component
frameworks. The only requirement imposed by this methodology is the
creation of a code generator for each particular component framework to
be used. By creating different code generators (i.e.‚ model interpreters)‚

1

2

3

4

94 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

components from different frameworks can be mixed and code for the
corresponding framework can be generated.

Using these modeling techniques‚ a meta-model for the Globus Toolkit was
created‚ as well as an interpreter that automatically generates Java code from
the workflow models. With this approach‚ a programmer manipulates graphical
models that represent the different components provided by the Globus Toolkit.
From these models‚ the programmer is able to generate the corresponding Java
programs that manage the execution of the application.

The potential impact of this study is the reduction of the development time
involved in generating applications for the Globus Toolkit. Furthermore‚ users
are not required to learn how to use the Java CoG Kit nor the Globus Toolkit
to develop Grid-enabled applications. Rather‚ they construct graphical models
that are at a more appropriate level of abstraction for describing the essence of
the problem for a specific domain.

References
E. Akarsu‚ F. Fox‚ W. Furmanski‚ and T. Haupt. WebFlow -High-Level Programming
Environment and Visual Authoring Toolkit for High Performance Distributed Computing.
In Proceedings of the 1998 ACM/IEEE Conference on Supercomputing‚ pages 1-7‚ San
Jose‚ CA‚ 1998.

M. Aldinucci‚ S. Campa‚ M. Coppola‚ M. Danelutto‚ D. Laforenza‚ D. Puppin‚ L. Scarponi‚
M. Vanneschi‚ and C. Zoccolo. Components for High Performance Grid Programming in
Grid.it. In: Component Models and Systems for Grid Applications‚ pp. 19–38‚ Springer‚
2004.

M. Alt‚ J. Dünnweber‚ J. Müller‚ and S. Gorlatch. HOCs: Higher-Order Components for
Grids. In: Component Models and Systems for Grid Applications‚ pp. 157–166‚ Springer‚
2004.

K. Amin‚ M. Hategan‚ G. von Laszewski‚ and N. Zulezec. Abstracting the Grid. In Pro-
ceedings of the 12th Euromicro Conference on Parallel‚ Distributed and Network-Based
Processing (PDP 2004)‚ pages 250-257‚ La Coruña‚ Spain‚ 2004.

The Apache ANT Project. http://ant.apache.org/

H.P. Bivens. Grid Workflow. GGF Grid Computing Environments Working Group Docu-
ment‚ 2001. http://www.ggf.org

K. Czajkowski‚ S. Fitzgerald‚ I. Foster‚ and C.Kesselman. Grid Information Services for
Distributed Resource Sharing. In Proceedings of the Tenth IEEE International Symposium
on High-Perfomance Distributed Computing (HPDC-10)‚ pages 181-184‚ IEEE Press‚
August 2001.

K. Czajkowski‚ I. Foster‚ C. Karonis‚ C. Kesselman‚ S. Martin‚ W. Smith‚ and S. Tuecke.
A Resource Management Architecture for Metacomputing Systems. In Proceedings IPP-
S/SPDP ’98 Workshop on Job Scheduling Strategies for Parallel Processing‚ pages 62-82‚
Springer-Verlag‚ 1998.

E. Deelman‚ J. Blythe‚ Y. Gil‚ C. Kesselman‚ G. Mehta‚ K. Vahi‚ K. Blackburn‚ A. Laz-
zarini‚ A. Arbree‚ R. Cavanaugh‚ and S. Koranda. Mapping Abstract Complex Workflows
onto Grid Environments. Journal of Grid Computing‚ l(l):25-39‚ 2003.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

A Graphical Workflow Modeling Environment for the Globus Toolkit 95

D.W. Erwin. UNICORE - a Grid Computing Environment. In Concurrency and Compu-
tation: Practice and Experience‚ 14(13-15): 1395-1410‚ 2002.

J. Fisher‚ F. Hernández‚ and A. Sprague. Language Patterns: Comparison and Predic-
tion using Hidden Markov Models. In Proceedings of the 41st Annual ACM Southeast
Conference‚ pages 246-250‚ ACM Press‚ Savannah‚ GA‚ 2003.

Flow Editor. http://www-unix.globus.org/cog/projects/floweditor/

I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. The In-
ternational Journal of Supercomputer Applications and High Performance Computing‚
11(2): 115-128‚ 1997. http://www.globus.org

G. Fox‚ D. Gannon‚ and M. Thomas. Overview of Grid Computing Environments. In Grid
Computing: Making the Global Infrastructure a Reality (F. Berman‚ G. Fox‚ and T. Hey
eds.)‚ pages 543-554‚ John Wiley and Sons Ltd‚ Chichester‚ 2003.

J. Frey‚ T. Tannenbaum‚ I. Foster‚ M. Livny‚ and S. Tuecke. Condor-G: A Computation
Management Agent for Multi-Institutional Grids. Cluster Computing‚ 5(3):237-246‚ July
2002.

E. Gamma‚ R. Helm‚ R. Johnson‚ and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley‚ Reading‚ Massachusetts‚ 1995.

D. Gannon‚ S. Krishnan‚ A. Slominski‚ G. Kandaswamy‚ and L. Fang. Building Appli-
cations from a Web Service based Component Architecture. In: Component Models and
Systems for Grid Applications‚ pp 3–17‚ Springer‚ 2004.

The Globus Resource Specification Language RSL v1.0.
http://www.globus.org/gram/rsl_spec1.html

J. Gosling‚ B. Joy‚ and G. Steele. The Java language specification. Addison-Wesley‚ 1996.

J. Gray‚ T. Bapty‚ S. Neema‚ and J. Tuck. Handling Crosscutting Constraints in Domain-
Specific Modeling. In Communications of the ACM‚ 44(10):87-93‚ October 2001.

J. Gray‚ M. Rossi‚ J.P. Tolvanen. Preface: Special Issue on Domain-Specific Modeling. In
Journal of Visual Languages and Computing‚ 15(3-4):207-209‚ June/August 2004.

F. Hernandez. Domain-Specific Models and the Globus Toolkit. Tech. Rep. UABCIS-TR-
2004-0504-1 ‚Department of Computer and Information Sciences‚ University of Alabama
at Birmingham‚ 2004. http://www.cis.uab.edu/info/grads/hernandf/papers/UABCIS-TR-
2004-0504-1.pdf

JLex: A Lexical Analyzer Generator for Java(TM). http://www.cs.princeton.edu/˜appel/
modern/java/JLex/

G. Karsai‚ M. Maroti‚ A. Lédeczi‚ J. Gray‚ and J. Sztipanovits. Composition and Cloning
in Modeling and Meta-Modeling. In IEEE Transactions on Control System Technology
(special issue on Computer Automated Multi-Paradigm Modeling)‚ 12(2):263-278‚ March
2004.

B. Kernighan and D. Ritchie. The C programming language. Prentice Hall‚ 1988.

A. Lédeczi‚ A. Bakay‚ M. Maroti‚ P. Volgyesi‚ G. Nordstrom‚ J. Sprinkle‚ G. and Karsai.
Composing Domain-Specific Design Environments. IEEE Computer‚ 34(11):44-51‚ 2001.

M. Lorch‚ and D. Kafura. Symphony - A Java-based Composition and Manipulation
Framework for Computational Grids. In Proceedings of the 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid2002)‚ pages 136-143‚ Berlin‚
Germany‚ 2002.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

96 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

J. Novotny. The Grid Portal Development Kit. Concurrency and Computation: Practice
and Experience‚ 14(13-15): 1129-1144‚ 2002.

J. Sztipanovits and G. Karsai. Model-Integrated Computing. IEEE Computer‚ 30(4): 110-
112‚1997.

I. Taylor‚ M. Shields‚ I. Wang and O. Rana. Triana Applications within Grid Computing
and Peer to Peer Environments‚ Journal of Grid Computing‚ 1(2):199–217‚ January 2003.

G. von Laszewski‚ K. Amin‚ M. Hategan‚ N. Zaluzec‚ S. Hampton‚ and A. Rossi. GridAnt:
A Client-Controllable Grid Workflow System. In Proceedings of the 37th Hawaii Inter-
national Conference on System Science‚ pages 210-219‚ Island of Hawaii‚ Big Island‚ Jan
5-8‚ 2004.

G. von Laszeweski‚ I. Foster‚ J. Gawor‚ and P. Lane. A Java Commodity Grid
Toolkit. Concurrency and Computation: Practice and Experience‚ 13(8-9):643-662‚ 2001‚
http://www.cogkits.org/

Workflow in Grid Systems Workshop. http://www.extreme.indiana.edu/groc/Worflow-
call.html

B. Yeo and B. Khoo. An Agent-based Grid Flow Management Framework for the Prob-
lem Solving Environment (PSE). In Scientific Workflow Management Mini-Symposium‚
GlobusWorld‚ 2004. http://www.globusworld.org/program/slides/1a_4.pdf

[28]

[29]

[30]

[31]

[32]

[33]

[34]

ON HIERARCHICAL‚ PARALLEL‚
AND DISTRIBUTED COMPONENTS
FOR GRID PROGRAMMING

Françoise Baude‚ Denis Caromel‚ and Matthieu Morel
INRIA Sophia Antipolis‚ CNRS - I3S - University of Nice Sophia-Antipolis
Sophia-Antipolis – France

Francoise.Baude@sophia.inria.fr
Denis.Caromel@sophia.inria.fr
Matthieu.Morel@sophia.inria.fr

Abstract We propose a parallel and distributed component model for building applications
adapted to the hierarchical‚ highly distributed‚ highly heterogeneous nature of
Grids. Instead of featuring a flat assembly model as for instance in the CCM
and CCA models‚ we claim that a hierachical assembly model should ease the
building and dynamic reconfiguration of component oriented Grid applications.
The proposed model and associated framework is based on ProActive‚ a mid-
dleware (programming model and environment) for object oriented parallel‚ mo-
bile‚ and distributed computing. We have extended ProActive by implementing
a hierarchical and dynamic component model‚ named Fractal‚ so as to master
the complexity and scalability of composition and deployment. This defines a
concept of components for the Grid: primitive or composite‚ made of several
activities‚ parallel and distributed. Components communicate using typed one-
to-one or collective invocations on interfaces. Composition of interfaces and of
other properties such as the one pertaining to the deployment of components are
specifically addressed.

Keywords: active objects‚ hierarchical components‚ deployment‚ dynamic configuration‚
group communications

98 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

1. Introduction
In order to motivate our research‚ we begin by recall what are the requirements

of Grid programming models‚ and then‚ what are the specificities of the other
research on component oriented models for Grid programming with which our
work can be compared.

1.1 Context and Related Work
Component programming for Grid and peer-to-peer computing is gaining

growing interest‚ as it is considered of being capable to tackle the complexity‚
dynamicity and heterogeneity of target applications and their support maybe
more easily than other approaches. Examples of alternative programming mod-
els currently in use include MPI for message passing‚ and GridRPC [22] for re-
mote procedure calls. Indeed‚ one can consider Grid programming as requiring
a two-level programming approach [12]: nuggets or code modules are gener-
ated by conventional programming‚ that must be augmented for the Grid by the
integration of the distributed nuggets together into a complete executable. Of
course‚ each nugget may be something as complex as a parallel and distributed
application in itself. The user can be offered many different paradigms for
expressing this integration. One common model is a graphical interface where
nuggets are chosen from a palette and linked via their ports or channels. A
perhaps more powerful way is to program the linkage‚ via scripting or com-
piled programming languages. Whatever the paradigm‚ the idea is first to wrap
services (applicative or even Grid services) as components and second to rely
on a framework so as to instantiate those components and to allow them to be
composed into applications. As the time a component instance’s server inter-
face (server interfaces provide services) is invoked‚ the appropriate actions are
taken by the component implementation. Those actions may involve client
interfaces (client interfaces require services) of linked component instances.

Examples of this include the CCA model [15]‚ which defines components‚
and where instantiation and composition are implemented within a framework
(for instance‚ XCAT [5‚ 18]); the ICENI project [14]; the GridCCM project [11]‚
which relies on the Corba Component Model for the component definition and
whose specificity is to efficiently embed parallel MPI codes. One important
remark is that all of the known component models for Grid programming en-
able an assembly of components which is only flat. This chapter proposes a
novel approach through which Grid applications will be build by assembling
components in a hierarchical way instead.

1.2 Contribution
Our claim regarding component-oriented Grid programming is as follows:

On Hierarchical‚ Parallel‚ and Distributed Components for Grid Programming 99

a set of components‚ assembled or not‚ may usefully yield to a new
composite component that can recursively be composed with other com-
ponents. This is a way to enforce code reuse and scalability of the compo-
sition task‚ because it structures this task. More precisely‚ it enables the
user which builds an application by composition‚ to naturally proceeds in
a hierarchical and structured manner. With such an approach‚ we aim at
easing the programming‚ the deployment‚ and eventually the monitoring
of complex Grid applications;

1

inclusion‚ bindings‚ and also location of components‚ must be reconfig-
urable. This is a way to adapt to the dynamicity of Grid runtime environ-
ments. For instance‚ if a component fails‚ it is possible to replace it by a
new instance‚ then to rebind its enclosing component so as it references
it‚ without any other consequence for the rest of the application.

2

As a concrete illustration of those ideas‚ we describe the first version of
a component model for Grid computing we have defined and implemented
within the ProActive middleware [3]. The specification of the components is
conformable to the Fractal component model [6‚ 13]‚ a generic and extensible
software composition framework. We provide an implementation of the Fractal
specification API within the ProActive library [21] for parallel‚ distributed com-
puting [2‚ 8]. The library is based on an active object pattern that is a uniform
way to encapsulate: a remotely accessible object‚ a thread as an asynchronous
activity‚ an actor with its own script‚ a server of incoming requests‚ a mobile
and potentially secure agent.

In Section 2‚ we give a brief but complete overview of the proposed com-
ponent model; in Section 3‚ we detail two specific points that must be tackled
with when targeting Grid computing: distributed mapping and parallelism.

2. Overview of ProActive Components
Primitive components. By implementing the Fractal component model
within the ProActive library‚ components at the primitive level‚ are themselves
formed of one or several active objects (i.e. a primitive component is a nugget
that may be parallel and distributed). Standard meta-information (e.g. XML)
technique has to be used for identifying provided and used ports or interfaces.
Those ports are typed‚ and no IDL is required as the components are all defined
using the Java language. Currently‚ we are working on the design of a generic
wrapper implemented as active objects‚ whose aim is to encapsulate legacy par-
allel codes (i.e. Fortran-MPI‚ C-MPI codes). But the Grid specificity calls for
specific information related to the parallel and distributed nature of codes. More
importantly‚ an abstraction for the mapping of such codes must be included in
the component meta-information for the deployment. Such an abstraction is
named a virtual node [2]. Secondly‚ the client and server interface specifications

100 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

must authorize collective behavior. Collective communications to implement
parallel propagation of service invocations are essential for efficiency purposes.
Such a collective method invocation feature between active objects is available
in the ProActive library [1]; this feature is used for implementing collective
ports or interfaces. Other properties such as quality of service requirements for
instance may be identified in the future.

Composite components. Primitive components being defined‚ the next step
to master complexity and scale of Grid applications is to be able to compose
those building blocks into new components called composite. The resulting en-
capsulated composite component can be seen as a functional and autonomous
subsystem. Recursively‚ a composite component can be defined as the com-
position of primitive or composite components (see Figure 1). Components
systems can be initially described in a declarative manner using an architecture
description language (ADL) [9]‚ where are specified‚ in a standardized XML
format‚ components definitions‚ assemblies and bindings. An important as-
pect concerns the recursive composition of specific attributes with respect to
Grid defined at the level of inner components. Composing virtual nodes is the
opportunity to decide colocation of components or on the contrary to decide
remoteness. Composing two ports‚ when at least one of them is a collective one
is the mean to couple parallel codes via synchronization and data redistribution:
e.g. N-to-1‚ 1-to-N or N-to-M communication patterns.

Parallel composite components. A specialization of composite components
is parallel components: all the inner components of the composite component
are of the same component type; invoking a provided interface on the parallel
component triggers its parallel propagation to all the inner components.

A component is deployed and run through the container that ProActive trans-
parently offers via a set of meta-level objects. In particular‚ meta-level objects
implement all the component controllers specified by the Fractal model (more
importantly‚ the binding‚ content and life–cycle controllers). This im-
plies that any component whatever its nature‚ is associated to – at least – one
active object‚ the one which references meta-level objects.

As ProActive implements the Fractal specification (except component tem-
plates and sharing)‚ it is possible to dynamically start/stop component’s life-
cycle‚ reconfigure bindings and inclusions (by invocation of the Fracal API
methods‚ such as unbindFC‚ bindFC). This is thus the way to modify the ini-
tial description of a component system‚ incorporate newly created or discovered
components‚ reconfigure assemblies‚ etc.

On Hierarchical, Parallel, and Distributed Components for Grid Programming

Figure 1. The three types of components

We add an important property to the definition of a component for the Grid:
the information on its distribution, not in the form of concrete location, but
instead in the form of one or several virtual nodes. This way, only virtual
node names – not statically defined physical locations – appear in the com-
ponent definition. It is the component framework executing the deployment
of the application on the target architecture that maps virtual node names (i.e.
those symbolic names) to concrete physical locations. In the ProActive model,
physical locations are represented in the form of handles/entry points to corre-
sponding created or acquired remote JVMs.

101

3. Specific Properties of Grid Components

We will now first detail how the deployment of distributed and hierachi-
cal components on Grid infrastructures can be managed, and second, how to
compose collective interfaces of components.

3.1 Distributed Deployment

Mapping of a virtual node to a concrete JVM is described within a deployment
descriptor: protocol to start a process on a remote host (ssh, globus Gram, LSF,
etc), so as to create a JVM with a ProActive runtime (need path, classpath
for instance). We assume that it is the user that builds up an application by
composing components that provide such a deployment descriptor for the whole
application. Indeed, each application may have specific deployment needs
and parameters, so its complete deployment is initially defined in a global and
coherent way in such a deploymentdescriptor. As we run the components within
the ProActive middleware, we automatically provide a way to dynamically
migrate the activities of the components on new locations, while they are running
(this is one important part of the reconfiguration requirement).

Composing virtual nodes of two components pertain to composing their re-
spective sets of virtual nodes. It might be the case that names are in conflict,
so the composition may superimpose renaming. The superposition must be re-
membered in the composite definition for further usage at the deployment time.
For instance, assume a hierarchical component resulting of composing compo-
nent A exporting virtual node named vn1 and component B exporting virtual
node also named vn1. A design choice for the hierarchical component might be
to co-allocate both components on the same JVM. In this case, the virtual node
that the hierarchical component exports/specifies has just to be named vn1 and
the deployment proceeds normally by instantiating the hierarchical component
and both inner components on the JVM associated to vn1. On the contrary,
the user may want to be sure that the two inner components run on different
JVMs. In this case, during the composition, he renames both virtual names
as, for instance, vn1-A and vn1-B and specifies the set {vn1-A, vn1-B} as the
virtual node property value for the hierarchical component. Further, he defines
the deployment of vn1-A and vn1-B onto two distinct JVMs in the deployment
descriptor. The hierarchical component’s active object is indifferently created
on vn1-A or vn1-B without a specific mention of the user.

102 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

3.2 Collective Communication
As the proposed model targets high-performance Grid computing, there is an

additional need compared to the original Fractal component model: parallelism.
This means first, expressing parallelism at the component level and secondly,
be able to implement it efficiently.

Requirements. The aim is to provide the user which builds up an application,
a very simple way to identify and structure components that should run in
parallel and as such, be mapped on distinct computing resources. This also
requires that the forwarding of a service call on a group of components be itself
as parallel as possible, so that the services really have a chance to run in parallel.

Solution. We provide a way to group services into groups of services of the
same type. We use the notion of collective port. This implies the following:
when calling a service on this port, the service is propagated to the group of
components it is bound to. As a programming-level constraint, only a client
port defined as collective can be safely bound to a group of components. Also,
the component model has to provide a way to get the current number of in-
stances in the collective port, initially and during execution, as this number of
instances may dynamically change (this is one important requirement for the
reconfiguration aspect).

Implementation. We rely on ProActive’s group communication mechanism
which achieves asynchronous remote method invocation for a group of remote
active objects of the same type, with automatic gathering of replies [1] (other
but similar mechanisms for collective remote method invocations towards dis-
tributed objects exist, e.g. [10, 19]). Recall that each component is implemented
by one active object (even composite components). A group of services, that can
also be seen as a java.util.Collection, is simply represented as a group
of the associated references to active objects, and a collective port is indeed a
proxy-stub to the group. Moreover, a method call to the group is optimized
compared to the sequential achievement of individual calls (i.e. multi-threaded
sending of all calls, only one serialization phase for the parameters; note that by
default, each parameter is broadcasted to each individual call). When invok-
ing a service on a collective port, an important specificity (resulting from the
Proactive group communication mechanism) is that the result group is also a
group, transparently built at invocation time, with a future for each elementary
reply. The result group is immediately returned to the caller. It will be dynami-
cally updated with the incoming results, thus gathering results. It is possible to
slightly modify the semantics of a service invocation through a collective port :
in case a parameter is a group of values, each value can be asked to be scattered
to each individual call in a round-robin fashion.

Usage of a collective port is thus the way for a component to be bound to a
group of components. There are in fact at least two situations where the usage
of a collective port arises: as a client port, and as a server internal port of a
parallel component. These two cases are explained in more details below:

Collective client port. A client port can be specified as being a collective
one (see Figure 2b). In this case, the component implementation (on the figure,
the implementation of the component on the left) is prepared so as to take
advantage of a collective call on such a client port. Among others, it might have
programmed how to synchronize – and further combine/reduce – on the results
that will come back from each individual call (waitAll, waitAny, wait(result
number i), etc). It is of course completely dependent upon the component

On Hierarchical, Parallel, and Distributed Components for Grid Programming 103

104 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

implementation. In case the implementation is not prepared to be returned a
group of result instead of a single result, there might yield to a programming
error. For this reason, binding a group of components to a client port requires
that this port be defined as being collective. What is the benefit of exposing this
sort of client port at the component level? The user which builds up or use such
an application is aware of the fact that he can statically and dynamically adapt
the number of instances bound to this collective port to his needs (for ease of
structure, performance or fault-tolerance reasons).

Figure 2. Group communications allowing collective bindings and parallel components

A special case for a composite component: a parallel component. It is also
a composite, but re-dispatching calls to its external server interfaces towards
its inner components (see Figure 2a), with all parameters broadcasted (default
behavior). The number of parallel inner components that must be instantiated
at deployment time is defined externally in the deployment descriptor: by de-
fault, it is equal to the number of different JVMs that are created during the
activation of the virtual node specified by the parallel component. Alterna-
tively, the parallel component may have set a specific attribute which gives the
required number of instances. The bindings between each external server port
of the parallel component to the corresponding server ports of each instance are
performed transparently and automatically inside the parallel component (the
instances are created as a ProActive group): for this reason we can say that an
internal server port of a parallel component is a collective server port.

Composing collective ports. It is what we plan to explore in order to couple
parallel components. Every parallel component has an active object associated
to it and so could serve as a sophisticated re-dispatcher: for the set formed from
each client port of interest of each inner component of the parallel component
(thus defining the notion of a collective client port of a parallel component),
to the server collective port of interest it is bound to. The objective – but
maybe not the solution – is similar to what is achieved by introducing collective
communications as tees in the ICENI Grid oriented component model [20]:
switch, combiner, splitter, gather, broadcast; the same regarding the collective
port extending CCA ports, experimented in [17], which is in fact implemented
as a combination of translation components (i.e. customizable components,
efficiently called by the framework, to tackle translation/redistribution of data,
collective invocation and returns, e.g. a MxN component). Our challenge is to
provide a solution adapted to the component-oriented model we propose, that
is, without the explicit introduction of additional components (either generic or
programmer-modifiable), but only through the definition of Fractal ports and
the usage of the ProActive group communication mechanism. In this sense,
our design of collective ports composition should end up quite close to the
one which is based on collective RMI calls extended with the usage of a MxN
redistribution scheme introduced in recent CCA compliant implementations of
parallel data redistribution [4, 10].

On Hierarchical, Parallel, and Distributed Components for Grid Programming 105

4. Conclusion
We have successfully defined and implemented a component framework for

ProActive, by applying the Fractal component model, mainly taking advantage
of its hierarchical approach to component programming. This defines a concept
of what we have called Grid components. Grid components are formed of
parallel and distributed active objects, features mobility, typed one-to-one or

We think that these features will be key-points for reaching adaptive Grid mid-
dleware, with dynamic strategies at various points (for communications, check-
pointing, reconfiguration, .. .) in presence of various conditions (SAN, LAN,
WAN, P2P, etc).

We are also working on GUI-based tools to help the end-user manipulate
Grid component based applications. Those tools will extend the IC2D moni-
tor [2] provided in the ProActive middleware, which already helps in dynam-
ically changing the deployment defined by deployment descriptors (acquire
new JVMs, drag-and-drop active objects on the Grid): we intend to provide
graphical interactive dynamic manipulation and monitoring of the components
(besides what can already be done by programming once the application has
been deployed).

Such tools could be integrated to computing portals or with Grid infrastruc-
ture middleware for resource brokering (as done for instance in ICENI [14],
XCAT [18], etc.), so as to build dedicated Problem Solving Environments (see
SciRun for instance [16]). Compared to those previous frameworks which re-
lies on a flat assembly model of components for describing applications, the
proposed component model is a more general one as it allows structured/hier-
archical composition. As such, the hierarchical and structured dynamic manip-
ulation of component-based applications, through portals or any other means,
becomes naturally possible.

Moreover, the underlying activities of ProActive components are based on
an underlying computing model which follows a sound semantics [7]. So, there

106 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

collective service invocations and a flexible deployment model. They also
enables flexibility, dynamicity, structure and scalability at the composition task
level. Not all component models are equivalent. The one we think is well
adapted for complex softwares such as those for the Grids, is not based on
a flat assembly model, but on a hierarchical one (even if this induce some
overhead due to the presence of those ‘additional’ components which are the
composite ones). Moreover, it features reconfiguration capabilities. This means
dynamically be able to change bindings, inclusion, location. Reconfiguration is
the next big research issue for which we are currently considering the following
points:

have functional method calls (either single or collective) bypass each in-
ner composite component of a hierarchical component, so as to directly
reach target primitive components; but at the same time, enable of coher-
ent re-binding even in presence of direct functional communications

for the sake of reliability and fault tolerance which is crucial when com-
ponents are applied to Grid computing – or even worse in case of peer-
to-peer global computing–, error and exception handling across compo-
nents, checkpointing, volatility, and security must be considered.

L. Baduel, F. Baude, and D. Caromel. Efficient, Flexible, and Typed Group Communica-
tions in Java. In Joint ACM Java Grande - ISCOPE 2002 Conference, pages 28–36, ACM
Press, Seattle, 2002.

F. Baude, D. Caromel, F. Huet, L. Mestre, and J. Vayssière. Interactive and Descriptor-
based Deployment of Object-Oriented Grid Applications. In 11th IEEE International
Symposium on High Performance Distributed Computing, pages 93–102, 2002.

F. Baude, D. Caromel, and M. Morel. From Distributed Objects to Hierarchical Grid
Components. In CoopIS/DOA/ODBASE, LNCS, pages 1226–1242, Springer, 2003.

F. Bertrand and R. Bramley. DCA: A Distributed CCA framework based on MPI. In
9th International Workshop on High-Level Parallel Programming Models and Supportive
Environments at IPDPS, April 2004.

R. Bramley, K. Chin, D. Gannon, M. Govindaraju, N. Mukhi, B. Temko, and M. Yochuri.
A Component-Based Services Architecture for Building Distributed Applications. In 9th
IEEE International Symposium on High Performance Distributed Computing Conference,
2000.

E. Bruneton, T. Coupaye, and J. Stefani. Recursive and Dynamic Software Composition
with Sharing. Proceedings of the 7th ECOOP International Workshop on Component-
Oriented Programming (WCOP’02), June 2002.

D. Caromel, L. Henrio, and B. Serpette. Asynchronous and Deterministic Objects. In
Proceedings of the 31st ACM Symposium on Principles of Programming Languages,
ACM Press, 2004.

D. Caromel, W. Klauser, and J. Vayssiere. Towards Seamless Computing and Metacom-
puting in Java. Concurrency Practice and Experience, 10(11–13):1043–1061, November
1998.

P.C. Clements. A Survey of Architecture Description Languages. In International Work-
shop on Software Specification and Design (IWSSD’96), pages 16–25,1996.

K. Damevski and S.G. Parker. Parallel Remote Method Invocation and M-by-N Data
Redistribution. In 4th Los Alamos Computer Science Institute Symposium, 2003.

A. Denis, C. Pérez, T. Priol, and A. Ribes. Bringing High Performance to the CORBA
Component Model. In SIAM Conference on Parallel Processingfor Scientific Computing,
February 2004.

G. Fox, M. Pierce, D. Gannon, and M. Thomas. Overview of Grid Com-
puting Environments. Technical report, Global Grid Forum document, 2003.
http://www.ggf.org/documents/final.htm.

Fractal. http://fractal.objectweb.org.

N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field, and J. Darlington. ICENI:
Optimisation ofComponent Applications within a Grid Environment. Parallel Computing,
28(12), 2002.

D. Gannon, R. Bramley, G. Fox, S. Smallen, A. Rossi, R. Ananthakrishnan, F. Bertrand,
K. Chiu, M. Farrellee, M. Govindaraju, S. Krishnan, L. Ramakrishnan, Y. Simmhan,
A. Slominski, Y. Ma, C. Olariu, and N. Rey-Cenvaz. Programming the Grid: Distributed

On Hierarchical, Parallel, and Distributed Components for Grid Programming 107

is opportunity to construct well-defined behavioural semantics for components
and for their assemblies.

References
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Software Components, P2P and Grid Web Services for Scientific Applications. Cluster
Computing, 5(3), 2002.

C.R. Johnson, S. Parker, D. Weinstein, and S. Heffernan. Component-based Problem
Solving Environments for Large-scale Scientific Computing. Journal on Concurrency
and Computation: Practice and Experience, (14): 1337–1349, 2002.

K. Keahey, P. Fasel, and S. Mniszewski. PAWS: Collective Interactions and Data Transfers,
In Proceedings of the IEEE International Symposium on High Performance Distributed
Computing (HPDC’10), 2001.

S. Krishnan and D. Gannon. XCAT3: A Framework for CCA Components as OGSA
Services. In 9th International Workshop on High-Level Parallel Programming Models
and Supportive Environments (HIPS), 2004.

J. Maassen, T. Kielmann, and H.E. Bal. GMI: Flexible and Efficient Group Method Invo-
cation for Parallel Programming. In LCR’02: Sixth Workshop on Languages, Compilers
and Run-time Systems for Scalable Computers, 2002.

A. Mayer, S. Mcough, M. Gulamali, L. Young, J. Stanton, S. Newhouse, and J. Darlington.
Meaning and Behaviour in Grid Oriented Components. In Third International Workshop
on Grid Computing, GRID, LNCS, 2536:100–111, 2002.

ProActive Web Site. http://www.inria.fr/oasis/ProActive/.

K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, and H. Casanova. GridRPC:
A Remote Procedure Call API for Grid Computing. In Third International Workshop on
Grid Computing, GRID, LNCS, 2536:274, 2002.

108 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

[16]

[17]

[18]

[19]

[20]

[21]

[22]

ICENI: AN INTEGRATED GRID MIDDLEWARE
TO SUPPORT E-SCIENCE

Anthony Mayer, Steve McGough, Nathalie Furmento, Jeremy Cohen, Murtaza
Gulamali, Laurie Young, Ali Afzal, Steven Newhouse, and John Darlington
London e-Science Centre
Imperial College London
South Kensington Campus
London, UK

lesc-staff@doc.ic.ac.uk

Scientists now have a greater desire to undertake work within global collabora-
tions. This increases their dependence on distributed computation, storage and
data resources. For this new paradigm of e-research to be easily adopted by
the applied science community, it needs to be enabled by a new software infras-
tructure – Grid middleware. In this chapter, we describe ICENI, an integrated
Grid middleware that explores the services and meta-data necessary to support
e-research within a variety of application domains. We focus on the services
that we feel are necessary to facilitate Grid use, ranging from running a simple
self contained application through to building a simulation from scientific soft-
ware components distributed across a Grid, selecting the optimal combination of
services to enact the simulation and paying for them on demand.

Grid middleware, OGSA, component programming model, e-Science, schedul-
ing, performance, advance reservations, meta data

Abstract

Keywords:

ICENI (Imperial College e-Science Networked Infrastructure) has originated
from the research activities of Professor John Darlington and colleagues in the
70s and early 80s in the development and exploitation of functional languages.
The growth of applied parallel computing activities at Imperial College demon-
strated a fundamental need for a software environment to enable the use of
complex resources by the average scientist. This requirement became even
more apparent with the growth and adoption of Grid computing within the UK
(a significantly more complex environment than a single parallel machine) to
enable computer based research – e-research. The enduring goal of ICENI is to
increase the effectiveness and applicability of high-performance methods and
infrastructure across a whole range of application areas in science, engineering,
medicine, industry, commerce, and society.

Our focus within ICENI therefore has three major elements: prototyping the
services and their interfaces necessary to build a service oriented Grid mid-
dleware, developing an augmented component programming model to support
Grid applications, and to explore the meta-data needed to annotate the services
and software to enable effective decision making about component placement
within a Grid.

In this chapter, we present an overview of the ICENI Grid middleware de-
scribing many of the recent developments within this architecture. The aim is
to show how drawing these new technologies together provides an improved
user experience of the Grid. Details of each of these new technologies may be
obtained from the papers referenced in the appropriate section. We exemplify
the ‘real world’ use of ICENI through two of the external projects in which we
are involved, we further speculate as to the ‘added value’ our new features will
provide for users of these, and other, projects.

The rest of the chapter is organised as follows. Section 2 presents the overall
ICENI architecture, more details on the architecture can be found in [7]. The
component programming model is presented in Section 3, more details can be
found in [16–17]. Sections 4 and 5 present some of the higher level services we
are developing to support our current application communities. The scheduling
services are presented with more details in [1, 6, 28] and the economic services
in [5, 14]. The aim of these sections is also to show how these different aspects
of the ICENI middleware are brought together to provide enhanced solutions
to the user’s requirement. This is demonstrated in Section 6 through two of
the external projects we are involved in. Section 7 presents comparisons with
similar activities before Section 8 concludes and outlines some elements of the
future ICENI roadmap.

110 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

1. Introduction

Architecture Overview

111

The ICENI architecture, which is developed in Java, is an example of a ser-
vice oriented Grid middleware that is able to use different technologies (such as
Jini [11], Web services [27] or peer-to-peer infrastructures such as JXTA [12])
to instantiate the service architecture [7]. ICENI provides implementation in-
dependent abstractions that allow a service provider to develop and advertise a
service into the service registry where it may be discovered by other members
of the community – clients searching for a particular service type. On finding
an appropriate service, the client retrieves information from the registry that
will describe how the service instance may be contacted and used.

Figure 1. The ICENI service oriented architecture

Within ICENI, we use the Service Oriented Architecture (SOA) infrastruc-
ture to provide a mechanism for federating the resources managed by a real

ICENI: An Integrated Grid Middleware to Support e-Science

2.

This section presents an overview of the service oriented architecture that is
the basis of the ICENI middleware, as well as the mechanisms provided for the
deployment of ICENI.

2.1 The Service Oriented Architecture

The implementation neutral SOA interfaces within ICENI services may be
implemented through Jini (currently), JXTA (under development), Web Ser-
vices, or a text based registry such as LDAP [21]. This decoupling between the
services and the implementation that hosts them allows us to focus our efforts
on the higher level services needed to build an Open Grid Services Architec-
ture [19] (OGSA) and the support needed from the infrastructure rather than
the specific details of the infrastructure itself. An alternative approach is to
expose these services to other infrastructures through ‘gateways’. We have ex-
posed the Jini services within ICENI through an OGSI [20] (Open Grid Service
Infrastructure) gateway enabling interoperability between the two systems.

112 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

organisation into a pool of services that may be used by a virtual organisation
or a computational community (see Figure 1). There are two key abstractions:

a resource in a private administrative domain represents a capability
owned by a real organisation that may be exposed through ICENI for
sharing with a virtual organisation;

a service in the public computational community is a resource that has
been annotated with a policy that describes when and by whom the re-
source may be used.

1

2

2.2 Deployable Grids

The deployment of ICENI is simplified through the use of Java Web Start
based installation and configuration wizards. JavaWeb Start [25] allows across-
platform wizard based installation process to be launched directly from a Web
page. Once the necessary ICENI files have been downloaded and installed, the
configuration wizard provides a simple point-and-click interface to take users
through a step-by-step process to configure and launch ICENI services. The
wizard offers a quick and easy way for new users to get started with ICENI and
is also accessible for subsequent configuration of ICENI resources.

3. Component Programming Model
The service oriented architecture and the component programming model

are the two assets of the ICENI Grid middleware. This section presents the
component programming model.

3.1 Layered Meta-Data to Enable Component
Programming

Grid based programming requires a high-level programming model that per-
forms in a resource / platform independent fashion. While some modern lan-
guages (e.g. Java) provide supposedly platform independent programming,

the e-Science context requires the ability to deploy high performance codes
that have been compiled specifically for certain hardware configurations. The
solution to the tension between high performance and portability is to raise
the level of abstraction. Where one possesses multiple implementations of a
specified behavioural pattern, that pattern can be deployed on whatever hard-
ware resources are available. For this reason, ICENI defines a component pro-
gramming model with distinct layers of meta-data describing the component’s
meaning, behaviour and implementation [17].

An end-user who wishes to assemble an application uses tools to discover
ICENI software resources which appear as services within the architecture.
These resources provide the component meta-data for available components.
The user then composes the application in terms of meta-data descriptions as
the highest level of abstraction: the level of meaning. Once composed this
application can be reused whenever any software resources exist that support
the meanings expressed in the composition. Each meaning may have multiple
behaviours, which express the internal workflow model of the component, and
each behaviour may represent multiple implementations, where performance
characteristics and hardware resource requirements are specified.

ICENI: An Integrated Grid Middleware to Support e-Science 113

3.2 Spatial and Temporal Expressions

The design choices that motivate the separation of concerns between the
meta-data layers are driven by the distinction between spatial and temporal
expressions of composition. The application is composed using ‘spatial’ rela-
tionships, where there is no temporal ordering in the representation. As such,
components do not represent dependent activities in a task graph, but rather
concurrently existing actors communicating through channels. We adopt this
model as it allows interactive modifications to composition at run-time: to give
an example, consider an existing executing composition consisting of a simu-
lation and a visualisation component. These can be discovered dynamically,
and a steering component added to the composition without any redefinition
of the existing relationship between the simulation and visualisation. Adding
and removing components from the workflow is made substantially easier with
a non-temporal representation, and is a key feature of the ICENI component
programming model [16].

The disadvantage of using a spatial workflow model is that the performance
modelling mechanism requires a task graph of the composed application’s activ-
ities – this is where the behavioural layer is brought into play. The behavioural
meta-data specifies the task graph of activities that occur upon the invocation
of each port on a component. By taking this into account alongside the spatial
composition of components, it is possible to assemble a composite task graph

114 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

The meta-data provided by the component programming model is now used
to drive an intrinsic trinity between the scheduling of a workflow, its behavioural
and performance meta-data (available about the components within the work-
flow) and the ability to reserve resources [1, 6]. Without performance modelling
one cannot extract a critical path, nor produce accurate reservations, and with-
out reservations one cannot control the predictability of execution times. In
this section, we outline the scheduling and performance architecture developed
within ICENI to exploit this trinity.

Figure 2. The trinity architecture: scheduling, reservation and performance prediction

for the entire application. This graph is then used to create performance models
for each possible set of implementations of the available components.

3.3 Implementation Selection & Scheduling
The temporal expression of workflow, the task graph, can be labelled with

performance data for activities being executed on distinct hardware resources.
From this graph, it’s possible to build sets of composite performance models for
each possible allocation of resource/implementation combination and compare
them. This information can be utilised by the scheduler, which may not neces-
sarily always select the fastest resources (if, for example, it is also accounting
for their cost). We describe the exploitation of the performance information in
the next section.

4. Performance Driven Scheduling & Reservation
This section presents the scheduling mechanisms provided by ICENI. These

mechanisms are built on top of the service oriented architecture and the com-
ponent programming model presented in the two previous sections.

4.1 Overview

Components within a workflow are scheduled, through the ICENI scheduling
system which determines the ‘best’ mapping of component implementations
onto a subset of available resources through the goals of the various stake-
holders i.e. users, resource providers and managers of the virtual organisation.
Data from the Performance Repository, meta-data provided by the component
implementor and meta-data from the resource owner can be used in determining
the ‘best’ mapping. With this information, the scheduler can determine the
critical path and produce (potentially more than one) concrete workflow using
a subset of the resources available within the Grid. These concrete workflows
can be passed to the Reservation Service to generate reservations. Once a single
concrete workflow has been selected and resources reserved, the scheduler will
instantiate the planned workflow and expose the running components through
an Application Service.

A number of scheduling algorithms are available to perform this task, such as
simulated annealing, complete information game theory, best of N random and
exhaustive search [28]. These algorithms can be used within the ICENI envi-
ronment using the pluggable scheduling framework. Each of these algorithms
at some point has to evaluate and contrast potential schedules. When optimising
for time (as in most cases), this is done by computing the expected execution
time. By using the task dependency graph and the performance meta-data, the
expected start and end times for each activity are evaluated and the scheduler
can then select concrete workflows with the shortest overall duration. This
possible execution plan is passed to the Reservation Engine to obtain dedicated
reserved resources to support its execution.

ICENI: An Integrated Grid Middleware to Support e-Science 115

The basic trinity architecture is illustrated in Figure 2. A Scheduler may in-
teract with multiple Launchers (Job Management Services) representing one or
more resources. A Launcher may be associated with one Reservation Engine, if
reservations are possible. The Scheduler interacts with the Reservation Service
which in turn communicates with the Reservation Engines through the appro-
priate Launcher. There may be multiple Performance Stores each of which can
be interrogated by the Scheduler. Once a workflow is instantiated it will have
an Application Service which exists until the workflow terminates.

4.2 Scheduling

4.3 Performance
The Performance Repository system developed within ICENI is capable of

monitoring running applications to obtain performance data for the compo-
nents within the application. This may range from basic start and stop times
to more complex metrics such as operation count. This data is stored within
the Performance Repository with meta-data about the resource that executed

The Reservation Service attempts to co-allocate all the resources required
for the execution of the workflow. It does so by entering into negotiation with
the appropriate resource manager, abstracted through the Reservation Engine,
running on each resource in order to make advanced reservations for the time
and duration specified in the concrete workflow. The negotiation is bound
by the constraints defined by the earliest and latest start times for an activity
as calculated by the scheduler. The negotiation protocol is based on WS-
Agreement [9].

The Reservation Engine handles all incoming reservation requests. These
requests are validated in terms of the user access permissions and the availabil-
ity of the named resource. Then the Reservation Engine checks for conflicts
with existing reservations. If a conflict is detected, i.e. the time frame for
which a reservation is requested overlaps that of an existing reservation on the
same resource, the reservation request is rejected and the client notified. If the
reservation request is valid and there are no conflicts, the Reservation Engine
creates a reservation on the resource. The Reservation Engine can also poten-
tially return a list of alternative reservations: reservations on the same resource,
for the same duration of time, but beginning at a different time. The client can
then choose to create a reservation from the list of alternatives presented to it
or abandon the negotiation process.

116 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

the component, the component implementation and the number of other com-
ponents concurrently running on the same resource. There is also provision for
the component implementation designer to define other meta-data that should
be stored. This could include such things as the problem characteristics which
will affect the execution time.

In future runs of the ICENI system, the performance data stored can be used
by the scheduler to estimate the execution times for each component within
the workflow and hence the overall execution time of the application. The
rich meta-data stored in the Performance Repository can be used to tailor the
returned data to more accurately reflect the current circumstances.

4.4 Reservations

5. Economic Services
With transparent and composable services being made available through the

ICENI system, the possibility emerges of creating a true market in computa-
tional services. By adding the ability to account and charge for service usage,
an open market is envisaged, in which resources, both hardware and software,
may be traded remotely.

As part of the Market for Computational Services project [14], a number
of ICENI compatible Web services have been developed to support economic

RealityGrid [23] is an Engineering and Physical Sciences Research Council
(EPSRC) project that is exploring the use of Grid technology to investigate the
mesoscale structure of matter. One application used in this project is LB3D, a
parallel Lattice Boltzmann code written in Fortran 90 and C. ICENI is used to
support LB3D, enabling a level of flexibility, Grid deployment and collabora-
tive application usage unavailable with other systems. To aid the RealityGrid
project, a complete application pipeline has been implemented, allowing the de-
ployment, scheduling and visualisation of LB3D applications through ICENI.

In order to deploy LB3D on an ICENI managed Grid, the LB3D application
is wrapped up in an ICENI ‘binary component’. This component wrapper
defines application meta-data to support execution of the binary within the
ICENI infrastructure. Depending on the resource that has been selected, the
LB3D binary component will either be run interactively or submitted to a batch
system such as Sun Grid Engine [24]. It is important to note that though the
ICENI component model cannot handle parallel components, the code wrapped
in the binary component can be a parallel code.

Following the composition and scheduling of an application, ICENI facili-
tates the visualisation and steering of a running LB3D application. Much of
the science enabled by LB3D concerns features (such as the gyroid phase) that
are very difficult to discover automatically from the data; such features are only
discernible through visualisation. Since ICENI exposes running components as
services, collaborators can discover an executing application, and connect vi-
sualisation components at runtime without interfering or linking with the initial
application.

Other activity within the RealityGrid project has involved development of a
steering library to allow LB3D computations to be dynamically steered at run-
time [4]. This library provides instrumentation and hooks into LB3D (and many
other RealityGrid applications), and provides the link from the infrastructure
to the application. As an ICENI component, the steering library is published

ICENI: An Integrated Grid Middleware to Support e-Science 117

activity [5]. These include the Chargeable Grid Service, a Grid Payment Service
which acts as an interface to the underlying financial reconciliation systems,
and a Resource Usage Service. The key technology used to support the trading
of services is an Agreement Protocol that allows peer-to-peer negotiation of
prices and deliverable services.

6. Projects Using ICENI

The ICENI system is being developed to support several applied application
communities through the UK e-Science program. We illustrate two examples
of our activity in the rest of this section.

6.1 RealityGrid

118 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 3. Component composition showing a steering proxy used to support multiple steering
clients.

as a service, and may be discovered and invoked by anyone with the correct
access privileges. By utilising ICENI, multiple clients can invoke the steering
library by connecting to the ports of its component, and their commands are
passed in a coherent way to the application. This provides added value over
using the steering library alone, which can only support a single client with-
out interference. Figure 3 shows a component composition consisting of two
steering client components, that may be running at different physical locations,
connected to a steering proxy, facilitating collaborative steering.

Moreover, a facility is provided to stream the video of the visualisation
through the Access Grid. The Access Grid nodes are started as ICENI compo-
nents. The control of the different nodes is done centrally through the Access
Grid Controller, another ICENI component. Any modifications to the Access
Grid session from one node are automatically propagated to all other nodes.
When defining the Access Grid application, it is possible to give each display
node permission to control the Access Grid session (simply by making a specific
port connection).

The ICENI Access Grid components also provide encryption of the data
through a video and an audio key. These keys can be generated from any
control component, they are then sent to all the display nodes that are part of
the session. Any third-party user connected to the AG room will then be unable
to connect to the ICENI session.

6.2 GENIE
The Grid ENabled Integrated Earth system model (GENIE) project [8] is

funded by the Natural Environmental Research Council (NERC) and aims to

deliver both a flexible Grid-based architecture, which will provide substantial
long-term benefits to the Earth System modelling community; and also new
scientific understanding of the global environment from versions of the Earth
system model (ESM) developed and applied in the project.

The scientific focus of GENIE is on long-term changes to the Earth’s climate,
particularly the (geologically) recent ice-age cycles and the future response to
the Earth system to human activities, including global warming. A realistic
ESM for this purpose must include models of the atmosphere, ocean, sea-ice,
marine sediments, land surface, vegetation and soil, ice sheets; and the energy,
biogeochemical and hydrological cycling with and between components.

Consequently the e-Science objectives of the project are to develop, inte-
grate and deploy a Grid-based system to flexibly couple together state-of-the-art
components to form a unified ESM, execute them on heterogenous distributed
computing resources, and share the resultant data in a distributed way, while
still maintaining high-level open access to the system to support a virtual or-
ganisation of Earth System modellers.

ICENI has been used to meet some of these objectives [10]. In particular,
we have been able to wrap a prototype version of GENIE, comprising of a 3-
dimensional (frictional geostrophic) ocean model coupled to a 2-dimensional
(energy-moisture balance) atmosphere model, as an ICENI Binary Component
in order to perform parameter sweep experiments (see Figure 4). A Setup
Component initialises the experiment, creating the necessary input files for
the GENIE binary executable using parameters chosen by the user during the
composition phase. This passes data to a Broadcast Component which delegates
the data to multiple Binary Components (only 3 are shown in the figure), each
of which execute the GENIE model. As each simulation finishes, the Binary
Component passes the resultant data to a Funnel Component, which passes it
to an Archive Component that handles the archiving of the resultant data.

In order for this application to run efficiently the ICENI framework provides
a number of launching mechanisms that take the presence of Distributed Re-
source Managers (DRMs) into account during the scheduling and launching
phases of application deployment. This allows a large number of jobs to be
submitted to a single computational resource hosting a high-throughput system
such as Condor [26]or the Sun Grid Engine. Moreover, the componentised
nature of ICENI applications (see Section 3) allows us to submit a GENIE pa-
rameter sweep experiment across multiple computational Grid resources, and
consequently we may combine and use several high-throughput systems in a
single experiment.

As a result of our efforts, the environmental scientists involved in the GENIE
project are able to commit their own individually administered computational
resources to form a Grid and perform parameter sweep experiments consisting
of approximately 1000 individual GENIE simulations per experiment. Thus al-

ICENI: An Integrated Grid Middleware to Support e-Science 119

120 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 4. The GENIE parameter sweep experiment as a component-based application. Arrows
describe the direction of control and data flow between components.

Both the RealityGrid and GENIE projects can benefit from the performance
and reservation mechanisms provided in ICENI. Both of these applications are
based on the execution of a binary component, and have substantial compu-
tational requirements. As such the choice of the resource used to execute the
component is critical. Performance data will help to select the best resource
and advanced reservation will ensure the component has exclusive access to the
resource.

Performance and reservation mechanisms provide the ability for each Grid
user to optimise their use of the Grid. However, this approach on its own need
not lead to an overall optimal use of the Grid. It may lead to conflict over
resources, in which all users attempt to deploy their work to the same set of
“best” resources. Alternatively this may lead to a situation in which low priority
users unnecessarily take the “best” resources when their jobs arrive before those
of higher priority users.

By adding an economic model to the Grid, the user is forced to balance their
cost–benefit requirements. A user will wish to use the cheapest resource for
which choosing this resource will not adversely affect their requirements. Like-
wise a low priority user is unlikely to have the funds to affect the requirements
of a high priority user.

lowing them to carry out scientific investigations about the natural environment
in a relatively novel and significant way (e.g. [15]).

6.3 Further Improvements

In this section, we present some related works that offer component models
intended for high performance Grid computing, similar to that of ICENI. The
ICENI middleware system offers other functionalities alongside the component
model; there are higher level services such as schedulers, resource reservation
systems built upon a loosely coupled service oriented architecture, yet it is
instructive to consider alternative component systems.

GridCCM [22] is a parallel extension to the CORBA Component Model
(CCM): it defines a parallel component as a collection of identical sequential
components that execute all or some parts of their services in parallel. Hence,
parallel codes can be embedded into a parallel CORBA component with few
modifications to parallel codes. Besides, GridCCM targets to extend CCM but
not to modify the model so as to define a portable extension that can be added
to any implementation of CCM. GridCCM supports parallel communication
flows between parallel components, which may involve data redistributions.

The deployment model of GridCCM is based on the standard CCM deploy-
ment model. However some parts are being specialised for Grids, such as the
interaction with a given Grid resource allocation environment, Globus [13] for
example. It should be noted that the GridCCM implementation supports parallel
components - a feature which is currently unavailable within ICENI.

ProActive is a middleware for object oriented parallel, mobile, and distributed
computing. ProActive implements a hierarchical and dynamic component
model, named Fractal [18], with the aim to master the complexity of compos-
ability, deployment, re-usability, and efficiency of Grid applications [3]. This
defines a new concept of hierarchical components that, recursively, can be paral-
lel, made of several activities, and distributed. These components communicate
using typed one-to-one or collective method invocations. At runtime, newly
deployed or discovered components can be incorporated in the application, as
component bindings and component inclusions can be modified. Component
mappings can also be modified due to the mobility feature of active objects
implementing components. ProActive provides a critical feature that ICENI
components and GridCCM components lack, the ability to seamlessly migrate
components during execution.

The Common Component Architecture (CCA) [2] presents a unified com-
ponent based model for high performance computing. There are a number of

ICENI: An Integrated Grid Middleware to Support e-Science 121

For projects such as RealityGrid which have high priority (interactive) users
requiring real time performance, economics provide the mechanism to allow
these users to obtain time on high performance (price) resources. Conversely in
the case of GENIE where the results are not required to be interactive, “money”
can be used in the purchasing of high throughput resources.

7. Related Work

A. Afzal, J. Darlington, S. McGough, S. Newhouse, and L. Young,
Workflow Enactment in ICENI. In Proceedings of the Third UK
e-Science All Hands Meeting, Nottingham, UK, September 2004.
http://www.lesc.imperial.ac.uk/iceni/pdf/ahm2004_WorkflowEnactment.pdf

R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, and B.
Smolinski. Toward a Common Component Architecture for High-Performance Scien-
tific Computing. In Proceedings of the Eighth IEEE International Symposium on High
Performance Distributed Computing, HPDC’99, page 13, August 1999.

122 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

distinct implementations of the CCA, each featuring distinct functionality, such
as distributed or parallel underlying frameworks. The CCA is designed around
a spatial workflow model in which components exist concurrently, though cur-
rent implementations of the CCA can be mapped onto temporally ordered Web
service workflows. Such a model is similar to the ICENI component model,
though the semantics are marginally different (standard ICENI component con-
nections are one-to-one, with specific exceptions made for utility components
such as broadcasts or splitters, while CCA components allow one-to-many con-
nections).

There is a clear synergy between these four different component systems:
ProActive, GridCCM, CCA and ICENI. They all have unique features which
might be interesting to integrate in the other systems. We are currently exam-
ining the state of interoperability between these component systems and the
ICENI component architecture, and exploring possible opportunities to layer
the ICENI higher level services on a component framework from one of these
related technologies.

8. Conclusion

Within this chapter, we have presented recent work on the ICENI Grid mid-
dleware. We believe this represents one of the first attempts to provide an open
and extensible service based Grid architecture that is populated with services
that deliver usable functionality to e-researchers. These services range from
simple job submission to the more advanced performance driven scheduling
and reservation of complex multi-stage workflows. Sophisticated dynamic in-
teractivity is enabled via the component based design model, which allows
users to collaborate, steer, visualise and interactively modify their application
workflows.

While work is still ongoing, we believe we have a framework that enables
the non-trivial issues of building real usable Grid infrastructures, and have
had demonstrable success in delivering added value to application scientists in
multiple case studies.

References

[1]

[2]

F. Baude, D. Caromel, and M. Morel. From Distributed Objects to Hierarchical Grid
Components. In Proceedings of the International Symposium on Distributed Objects and
Applications, DOA, LNCS 2888:1226–1242, Springer, November 2003.

J. M. Brooke, P. V. Coveney, J. Halting, S. Jha, S. M. Pickles, R. L. Pinning,
and A. R. Porter. Computational Steering in RealityGrid. In Proceedings of
the Second UK e-Science All Hands Meeting, Nottingham, UK, September 2003.
http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/179.pdf

J. Cohen, W. Lee, A. Mayer, and S. Newhouse. Making the Grid Pay - Economic Web
Services. In Proceedings of the Workshop on Building Service Based Grids,GGF 11, June
2004.http://www.doc.ic.ac.uk/sjn5/GGF/GGF11/BGBS-Mayer.pdf

J. Darlington, S. McGough, S. Newhouse, and L. Young. Per-
formance Architecture within ICENI. In Proceedings of the Third
UK e-Science All Hands Meeting, Nottingham, UK, September 2004.
http://www.lesc.imperial.ac.uk/iceni/pdf/ahm2004_PerformanceArchitecture.pdf

N. Furmento, J. Hau, W. Lee, S. Newhouse, and J. Darlington. Implementa-
tions of a Service-Oriented Architecture on top of Jini, JXTA and OGSI. In Pro-
ceedings of the Second Across Grids Conference, Nicosia, Cyprus, January 2004.
http://grid.ucy.ac.cy/axgrids04/AxGrids/papers/E00-393596327.pdf

The Grid ENabled Integrated Earth system model project. http://www.genie.ac.uk/

Grid Resource Allocation Agreement Protocol.
https://forge.gridforum.org/projects/graap-wg

M.Y. Gulamali, T.M. Lenton, A. Yool et al. GENIE: Delivering e-
Science to the environmental scientist. In Proceedings of the Second
UK e-Science All Hands Meeting, Nottingham, UK, September 2003.
http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/026.pdf

Jini Network Technology. http://wwws.sun.com/software/jini/

The JXTA Project. http://www.jxta.org/

S. Lacour, C. Pérez, and T. Priol. Deploying CORBA Components on a Computational
Grid: General Principles and Early Experiments Using the Globus Toolkit. In Proceedings
of the Second International Working Conference on Component Deployment, CD 2004,
LNCS, 3083, Springer, May 2004.

London e-Science Centre. A Market for Computational Services.
http://www.lesc.ic.ac.uk/markets/

R. J. Marsh et al. Bistability of the Thermohaline Circulation Identified through Compre-
hensive 2-Parameter Sweeps of an Efficient Climate Model. Climate Dynamics, Accepted,
2004.

A. Mayer, S. McGough, N. Furmento, W. Lee, S. Newhouse and J. Darlington, ICENI
Dataflow and Workflow: Composition and Scheduling in Space and Time. In Proceed-
ings of the Second UK e-Science All Hands Meeting, Nottingham, UK, September 2003.
http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/132.pdf

A. Mayer, S. McGough, M. Gulamali, L. Young, J. Stanton, S. Newhouse, and J. Dar-
lington. Meaning and Behaviour in Grid Oriented Components. In Proceedings of the
Third International Workshop on Grid Computing, Grid 2002, LNCS, 2536, Springer,
November 2002.

Object Web Consortium. Fractal. http://fractal.objectweb.org/

Open Grid Services Architecture. https://forge.gridforum.org/projects/ogsa-wg

ICENI: An Integrated Grid Middleware to Support e-Science 123

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Open Grid Services Infrastructure (OGSI) v1.0. http://forge.gridforum.org/projects/ggf-
editor/document/draft-ogsi-service1/en/1

OpenLDAP Project. http://www.openldap.org

C. Pérez, T. Priol, and A. Ribes. A Parallel CORBA Component Model for Numerical
Code Coupling. The International Journal of High Performance Computing Applications,
17(4):417–429, 2003.

RealityGrid Project. http://www.realitygrid.org/

Sun Grid Engine (SGE). http://wwws.sun.com/software/gridware/

Sun Microsystems Inc. Java Web Start Technology.
http://java.sun.com/products/javawebstart/

D. Thain, et al. Condor and the Grid. In F. Berman, A. J. G. Hey, and G. Fox, editors,
Grid Computing: Making The Global Infrastructure a Reality, John Wiley, 2003.

W3C, Web Services. http://www.w3.org/TR/ws-arch/

L. Young, S. McGough, S. Newhouse, and J. Darlington. Scheduling Ar-
chitecture and Algorithms within ICENI. In Proceedings of the Sec-
ond UK e-Science All Hands Meeting, Nottingham, UK, September 2003.
http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/005.pdf

124 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

AN ARCHITECTURE FOR A PORTABLE
GRID-ENABLED ENGINE

Bruce Long and Vladimir Getov
Harrow School of Computer Science
University of Westminster
Watford Rd, Northwick Park
Harrow, London, U.K.

B.D.Long@westminster.ac.uk
V.S.Getov@westminster.ac.uk

Abstract

Keywords:

A common vision for the Grid is that it would enable heterogeneous, spatially
distributed, non-trusted computers to operate as a single system for users, compil-
ers, applications and services. However, currently available Grid solutions, while
providing for such computers to cooperate, are complex and do not support the
single system image principles. In this chapter, we describe a simple architecture
for a portable Grid engine which produces and uses both interpreted and binary
objects constructed around text-based mathematical descriptions of those objects
and their classes. A first prototype engine has been implemented that achieves
some functionality and a fully functional model is under development.

Grid engine, Grid platform, OGSA, virtual organization, global namespace,
lightweight platform

The ability to access information on the Web from various types of devices
anywhere in the world has been capturing the minds of individuals, developers,
scientists, and those in business. Many particular Web systems already allow
such access in various application domains. The next natural step in exploiting
the Internet’s huge opportunities is the development and utilization of the Grid.
The emphasis in a Grid environment is the access to different kinds of remote
resources in addition to simply information, dramatically increasing the variety
of applications offered to the end user. While a rich collection of protocols and
APIs have already been developed to facilitate Grid programming, there is no
clearly defined Grid platform yet. As more complex solutions are requested
by users, more tools and patches will be added, and, in the end, systems will
be very complex webs of overlapped and obsolete tools, APIs, and protocols
requiring engineers with very complex skill-sets. They will not grow well.

In order for a platform to offer available-from-anywhere Grid services on
any information device and yet grow well, the functionality that provides such
services must be factored completely out of the application software and into
the platform. In particular, it would be useful to have a platform on which
information could be stored and on which programs could be written, built and
executed, but where the platform exists and is accessible on a system of loosely
connected devices rather than on a single tightly controlled computer. There
are currently several projects working toward this goal. For example, the draft
report for an Open Grid Services Architecture (OGSA) platform [8] specifies
that Grid services be built and managed according to the Open Grid Services
Infrastructure (OGSI) [6] specification. It describes a number of platform in-
terfaces which applications may use to find and manage data, policies, security
information, etc. Lastly, it is also proposed in the OGSA platform draft speci-
fication that XML Schema Language (XSL) [7] models of common resources
be used to standardize the use and management of common resources.

The draft OGSA platform specification does not express how, on an arbitrary
host and in a heterogeneous environment, tasks can be run, binaries that access
local resources can be created and executed, and a user interface can be accessed,
perhaps on a non-local host. Part of this functionality is, however, implemented
in the Globus Toolkit [9, 14]. A natural next step would be to develop the
architecture for a portable Grid-enabled engine conforming to the following
basic requirements:

126 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

1. Introduction

Portability

Performance

Small memory image

Real-time support

Since many of the resources and services upon which an application or service
relies during execution vary in format from environment to environment, a
generic platform must be able to identify any environment-specific functionality
and make an appropriate substitution of identical functionality at build time,
load time, or even during execution. To accommodate such specialization, we
mention three types of binding common to most environments.

An Architecture for a Portable Grid-enabled Engine 127

This chapter outlines a solution in which an abstract modeling language is
used as an intermediate language to respond to changes in an environment by
choosing from among a variety of solutions such as building a specialized binary
to take advantage of new hardware or working with a different user interface
paradigm. The described solution provides a single system image (SSI) [3] for
both service and application binaries by having languages compile to the inter-
mediate language. The rest of this chapter is organised as follows. Section 2
provides an introduction into different types of environment bindings and the
modeling language – Quanta. Section 3 discusses the model of the generic
Grid engine, while Section 4 describes its architecture. The implementation
methodology is covered in Section 5, followed by Section 6 on related work
and the conclusions.

2. Environment Binding

2.1 Binding via Identity Substitution

The method being described to bind programs to an environment is to rep-
resent situations that may vary over environments and, at the appropriate time,

Binding to local resources. High-speed local resources such as graphics
hardware, Fire Wire ports, or cards on the local bus can be utilized more
efficiently if the binding to them is not through a Grid service on the local
host.

Binding to build and run binaries or perform calculations. The binaries
used to perform tasks may vary over environments as well as over the
method of executing the task. On a low level, binaries must be built per
environment to bind to the local operating system or processor type. For
example, an operation to process a block of data may be implemented as
a loop on one machine but as a parallel operation on another.

Binding to a user interface platform. Applications or services that must
interface with users on a heterogeneous system must be bound to a local
user interface platform such as the Windows GUI, Java Swing, or a Web-
based user interface. If the user is not at the local machine, as is common
with distributed gaming, programs may be bound to a user interface proxy.

128 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

substitute an environment-specific situation that provides equivalent function-
ality. In the simplest case, such a situation may be of a call to a function or an
assignment operation. More complex binding operations, such as binding to
custom processing hardware or specializing the creation of a binary, may require
substitutions through sequences, conditionals, or repetitions. With the addition
of nested substitutions, the creation of complex compositions of services, local
resources, and user interface components may be automated.

2.2 The Quanta Language

Quanta is a lightweight core language [17] for describing objects and classes,
and systems of objects and classes. Based on this description, an engine can then
be used to make inferences about the objects and classes in order to instantiate
objects or to query and manipulate them. By extending the engine’s namespace
to include other namespaces or outside objects, Quanta and the engine can be
used to manipulate and query such systems as easily as internal objects. A
variety of methods for accomplishing a task can be represented, thus allowing
the engine to determine an optimal method. Lastly, a Quanta engine can be
made to translate sequences, conditionals, and repetitions into code, providing
the ability to produce a C file or a binary specialized for a particular environment.
It can be used as an intermediate language by compiling, for example, C++ or
Java byte code to Quanta.

Quanta models classes, objects, and systems of objects in such a way that
the effects of using a modeled system can be inferred. Objects classified can be
digital or analog, physical or abstract. A Quanta engine can use the models to
infer what use of resources on the local system or on a network can be substi-
tuted to meet given binding requirements. The engine then makes the required
substitutions. Because the engine can make substitutions involving the von
Neumann structures of sequences, conditionals, and repetitions of information
manipulations, entire algorithms can be reworked as needed to take advantage
of new resources and accomplish a task or instantiate an object. The following
are some of the major components of the Quanta language:

Numeric, string, and Boolean literals

Names / functions

Identity assertions

Informatic membership, union, difference, intersection and complement

Block, repetition, and conditional constructions

A connection to the local system, e.g., ability to make certain system
calls.

An Architecture for a Portable Grid-enabled Engine 129

Using identity assertions, any construction of the above components can be
hierarchically mapped to any other one. For example, a function can be mapped
to an algorithm or to a system call, while a repetition or sequence can be mapped
to the results of running a parallel processor using a given algorithm.

3. A Generic Integrated Grid Engine Model

3.1 Namespace Management

3.2 The Execution Environment

The generic Grid engine model being described has three aspects: namespace
management, the execution environment, and binary-to-environment binding.
While the engine is executing on a local host platform, it is running in the
context of one or more virtual organizations (VO) [11]. In addition to any VOs
with which the platform engine associates due to membership or affiliations
of the owner, a global VO will exist and operate in much the same way that
peer-to-peer services such as Kazaa operate, yet without the purpose of mass
file sharing.

The platform engine running on its local host will maintain a hierarchical
namespace, as shown in Figure 1. The local namespace will include references
and Quanta descriptions of such items as the following:

Local hardware available

Local file systems and objects/services

References to local users, their local settings and objects

Local settings

In addition, each VO of which the system is a member will provide resources
to the namespace. In particular, the global Grid VO will provide a global
namespace managed by the peer-to-peer cooperation of all the systems in the
VO. By storing files and other objects in their global Grid namespace folder,
users and VOs will be able to access and manage their information globally,
even if their own machines are currently down. Other entities referenced in
the namespace are running processes and version information through Quanta
descriptions.

A process begins executing when it is created in the namespace and its
“executing” property is set to “true”. Other properties express whether it is
running on the local machine, a remote machine, or on multiple machines from
one or more VOs.

130 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 1. A device namespace

To support the widest variety of situations and preferences, there are three
executions modes (see Figure 2) under this proposed generic engine model. In
the “direct model” mode, the algorithms to be executed or the queries to be run
are specified as Quanta models. The Quanta engine decides how best to execute
them, whether to do so itself, build specialized binaries and execute them on
remote machines, or execute pre-specified processes or Java code [12] on re-
mote machines via Grid resouce allocation and management (GRAM) [13,19].
Perhaps a particular task will be divided into parts and executed on different
machines by all three methods. In “intermediate language” mode, programs
written in traditional languages such as Fortran, C, C++, Perl, or .Net CLR can
be compiled to Quanta as an intermediate language. The Quanta code can then

An Architecture for a Portable Grid-enabled Engine 131

Figure 2. The three execution models

be executed in “direct model” mode. Lastly, in “immediate” mode, binaries
and Java code built by other means can be executed directly using GRAM.

3.3 Binding Specialized Binaries

4. Architecture

The heterogeneous nature of Grid computing requires generalizing over both
hardware and user interface types. By using an intermediate language which
can model hardware, user interface types, and applications, the portable Grid
engine may build specialized binaries for each new machine and user interface
types. As shown in Figure 3, there need not be a Grid user interface. Instead,
each situation can be mapped to the location, available user interface platforms,
and preferences of the user.

The engine is built from a small number of simple components that achieve
functionality by creating or utilizing objects described in various Quanta docu-
ments. In addition, Quanta documents describe users, policies, and services to
be provided.

132 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 3. Building specialized objects

4.1 Engine Components

The engine architecture is built around a generic platform engine, which
interprets the descriptive documents, as shown in Figure 4. The platform engine
uses the class descriptions and instantiation descriptions of resources contained
in the various documents to organize manipulations of the resources available to
it to accomplish the tasks given it. The platform adaptor interfaces the generic
engine to the host system, the Grid services, user interface, and to the system
Web server. While the generic engine remains the same regardless of the host
platform or the user interface mechanism, ports of the system to various host
platforms will involve modifying the platform adaptor and corresponding host
environment documents to interface the generic engine to the host system, the
Grid services, user interface, and a Web server. For example, a version running
on a Microsoft Windows system may have an adaptor, which allows the engine
to make Win32 operating system calls. A corresponding document in the host
environments documents would describe the relevant calls to the engine. In
addition, a document describing how binaries can be created on a Windows
host would be included.

The Web server component allows the engine to communicate with other
engines as well as with remote users via Web pages. It also provides the in-
terface for offering Grid services to other computers. For ports of the engine
to other host platforms, it is likely that the Web-server component will have
to undergo minor modifications to build and execute. Thus, a port to another
system type involves modifying the engine adaptor, creating several host en-
vironment documents, making any necessary modification to the Web server
code, and creating an installer program for that system type. A porter may
include a transport mechanism other than http; however, a Quanta document
describing the protocol should be included in the collection of host environment
documents so that the engine can use it accordingly.

An Architecture for a Portable Grid-enabled Engine 133

Figure 4. Engine architecture

Functions from the host system which are made available might include
functions of the host operating system such as access to the file system, TCP/IP
networking, I/O to hardware such as printers or graphics hardware, synchro-
nization mechanisms, or control over processes and threads. The decision will
be based upon the purposes of the porter. Whatever subsystems are made
available, a corresponding Quanta document specifying the functionality to the
engine should be added to the collection of host environment documents. For
some devices, access to devices through Grid services may be sufficient, and
thus some ports may not provide any access to the local host system.

Access to the host user interface functions may also be controlled by the
porter; however, a sufficient subset of user interface components should be
available if the engine is to implement such functionality as dialog boxes, text
editing, etc. Some devices such as a small cell phone or a device imbedded in
a simple sensor may not need or be capable of a full user interface. Likewise,
for some applications, the user interface provided by the Web server may be
sufficient. A Quanta document describing the user interface system should be
included in the collection of host environment documents.

The above architecture achieves portability across types of host systems by
abstracting the host systems and user interfaces. Performance and real-time
support are achieved by providing for the engine to accomplish tasks through

134 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

the creation of binaries that can be optimized. The system will have a small
memory image because the engine and the adaptor are relatively simple, and,
when needed, the Web-server module can be made small.

4.2 Architecture and the User Experience

4.3 Examples of Models for Various Host Environments

In addition to the standard OGSA services, the generic platform engine run-
ning on a machine offers a number of services to both users and other such
running engines if they are in a shared VO. The system will retain policies
concerning which users are offered which specific services, as well as which
machines or VOs can request them. When a user is identified at one of the con-
nection points the platform engine is monitoring, perhaps at the local machine
or by a Web interface, services will be offered and delivered by finding or build-
ing a binary that instantiates the requested application with the user interface
required. Some aspects of the task may be done through interpretation rather
than building a binary.

By offering and expecting certain services from peers, a VO or a union of
VOs will be created with a SSI, which can carry out tasks or offer services
independent of any particular machine. Thus, once a user starts an application,
it may not be apparent which machine or machines are actually carrying out
the computations or storing the information. Because messages from users are
marked as originating from a user, not a machine, in the namespace, the users
can switch machines in the middle of an application and have the user interface
follow them and even adjust for heterogeneity.

The decentralized nature of such a process, together with the existence of
a global VO, makes possible applications such as Grid-based DNS, public au-
thentication, or decentralized instant messaging to run outside the context of a
hosting organization. It also makes a high degree of cooperation possible; for
example, while a cell phone may be able to broadcast video over TCP/IP to
one or two viewers, if it were broadcast to a folder in the global VO (perhaps
the folder represents a unified resource idenifier), the VO could ensure that the
broadcast was replicated at strategic points and could serve the video at almost
any scale.

The models that populate the system’s namespace are held and communi-
cated in Quanta documents. Based on their use and lifetime, four categories
of documents can be identified. Below are examples of documents that might
exist in a finished product; they are in no way prescriptive and may be altered
considerably in the final platform engine design.

Library documents are static and available on all engine hosts. They in-
clude models of mathematical classes, identities and functions. Other library

An Architecture for a Portable Grid-enabled Engine 135

documents may describe typical computer hardware, data structures and al-
gorithms. Objects such as queues, strings, and streams, as well as memory,
network nodes, and common CPUs may be described. Also, documents may
describe Grid concepts such as the OGSA protocols, OGSI and other API’s and
utilities. For example, a Quanta document might map names and functionality
to LDAP [15] or UDDI [14] documents to facilitate the use of such services.
Those document maps would be built on a lower Quanta document mapping
the names implied by XML [20], XSL and intermediates such as SOAP [2].

Local system documents give the engine enough information to identify local
users, use local hardware, understand policies, offer services, and log on to and
participate in VOs, including the global VO. Such documents might describe
local hardware, local users, services to be offered, and to whom services should
be offered.

Host environment documents may describe particular types of hosting envi-
ronments such as Microsoft Windows, Java, or SUN environments. Documents
detailing how to compile and build binaries or C programs are an example, as
well as one detailing the execution environment; how to run and interact with
processes. Also, any local user interface types can be detailed.

Lastly, a number of Quanta and WSDL [4] documents will be exchanged
when an engine connects to any VOs, including the global VO. Such documents
might include models expressing network topology, authentication information,
collective namespace negotiation, or the locations of GIIS [5] servers.

5. Implementation Methodology

5.1 Implementing an Individual Engine

There are two aspects of the use of the Grid engine which must be discussed:
individual engines running on single machines, and the cooperation of the in-
dividual engines to produce a distributed platform. First we shall discuss the
implementation of a single engine.

On a high level, there are three major aspects of the engine that must be
implemented. First, there must be a representation of the namespace. Second,
there must be a method of processing the items named. Lastly, there must be a
mechanism providing access to items in the namespace from the outside world
to communicate with people, other computers, databases, sensors, etc. There
is an obvious analogy with the system architecture which consists of computer
memory (the namespace), a CPU, and I/O ports.

5.1.1 The Namespace. The namespace of our current implementation
of the Quanta engine is stored with a C++ class called infon. The properties
of infons are formally described in [18], though that document is currently

136 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

a draft. Briefly, infons can have identity and containment relations to other
infons. There are operators which join infons to each other in various ways
to produce new infons. Operations such as intersection, union, and difference
are defined. Infons can also be associated with a name. These properties can
be represented in a programming language by giving infons a linked-list of
their identity relations, is-a/has-a relations and the negation of those relations.
Literal infons have a pointer to raw memory or some other sequence of bytes. If
the infon contains subparts such as with a C struct or a union, these are spelled
out as idenitites and containments. For example, a literal infon representing an
email address would contain a user-name infon and a domain-name infon. A
non-literal infon for an email address would contain the same parts, but they
might be mapped to (identical to) a record in a database or to a field in an
HTTP form, for example. The syntax of Quanta maps directly to the structure
of an infon. That is, when Quanta is loaded it is an infon, and when an infon
is serialized it is in Quanta. The low level properties of infons can be used to
create complex layers of new infons.

In our implementation, an infon called World forms the top-level container
for the namespace of the engine. When the engine loads, it populates World by
loading a top-level Quanta document that includes the other Quanta documents
such as ones describing local resources, users, etc. World normally undergoes
constant modification as items within it change state or new items come into or
leave the namespace.

5.1.2 Processing. In the current implementation of the engine, the pro-
cessing of the infon World is done with an object of a class called agent. The
agent creates World and loads it from the top-level Quanta documents. As the
agent loads World, it identifies computing tasks which should be done. For
example, it may be that monitoring port 80 is required or that a particular algo-
rithm must be executed. These tasks are submitted to an agenda to be executed
by other threads. When a task is popped off of the agenda, the engine searches
World for actions within its capability that would be identical to the task as it
is described. Often it will find a number of different methods which would be
suitable. Each may have unique time/space requirements. One of the solutions
is chosen and executed. The results of the execution are often imbedded back
into World causing new tasks to be added to the agenda for execution. The
details of this processing are given in [17].

5.1.3 Input/Output. Perhaps the simplest part of the engine is the method
of connecting it to the I/O system of the host computer. The agenda can sub-
stitute specific (as determined by the implementation) Quanta functions with a
call to a C function or an operating system call. For example, when a task of
producing a “beep” sound is popped from the agenda the system will find that

An Architecture for a Portable Grid-enabled Engine 137

one of the possible ways of producing a beep will be to call the host system’s
operating system. This method of tying Quanta functions or objects to C or
system functions or objects is used to receive input as well.

5.2 Implementing Cooperation Among Groups of Engines

To create a VO, it is necessary that the individual engines in the group coop-
erate. A naive statement of the problem might be:

1

2

3

There exists a collection of goals to be fulfilled;

There exist resources for fulfilling those goals;

There exist methods for locating, accessing and utilizing the resources.

In practice, however, goals are often contradictory, available resources are finite,
and methods for accessing and utilizing resources do not always work.

One method of implementing cooperation among engines is for each engine
to interact with other engines in the same way that they interact with, for ex-
ample, Web or Grid services. That is, to use a WSDL or Quanta description
of the service to understand what it does, call the service, verify the results
and the trustworthiness of the service provider, then accept the results. There
are two drawbacks to using this as the only available method of cooperation.
First, this method places limits on how closly engines can cooperate on a task.
Second, it does not truly conform to the goal of having a program running on a
distributed platform. Rather, the program is running on whichever machine is
hosting the engine which processed the particular service request, and it farms
out parts of the task to other machines. There are two other implementation
levels of cooperation which extend the flexibility of the system and which deal
with contradiction and uncertainty in a manner that may be more robust in an
peer-to-peer environment.

The second level of cooperation is to allow engines to share a single name-
space and a single task-agenda in some way. They could use a shared data
structure or a virtually synchronized data-structure. The current plan is to have
engines negotiate what to share when they first contact each other, then to
maintain the share as needed. Likewise, cooperating engines might share a
single task agenda such that it is unknown which machine will be running a
particular task until one of them pops it off of the agenda. Such a shared agenda
could also be used to allot some tasks to more than one machine and compare
the results to test for trustworthiness.

A third level of cooperation is possible that provides for processes to execute
in a truly distributed fashion. With shared namespaces and shared agendas,
processes are running on multiple machines. It would be useful to have these
no-particular-machine processes be in charge of such tasks as maintaining the
system and providing user services. This could be done with some redundancy

138 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

such that rogue nodes, failure, and uncertainly could be mitigated without
relying on a “manager” machine.

Furthermore, by moving the logic of cooperation, authentication, and secu-
rity into the engine, not only is the architecture simplified, but the system can
begin to handle novel problems such as distributed denial of service attacks
by devising a solution using the same tools it uses to devise solutions to user
problems.

5.3 Examples

The following two examples are selected to illustrate our implementation
methodology.

5.3.1 Example 1. Suppose a user queries a PocketPC, which is running
a Grid engine, for an estimate of the number of stars in our galaxy. The engine
will first search its own namespace. Next, it will query a Quanta-Grid supernode
by negotiating a partial namespace merge with the supernode and running the
query on it. This may call data stores on OGSA nodes or use an XML-based
Web service. The result will be that the supernode returns some Quanta code to
the PocketPC’s engine. The code may be an actual number, but more likely it
will be an expression that could be as complex as the following meaning: “Send
the following query string to the computer at 221.45.65.2 using http POST, then
use the following algorithm to decrypt the results returned. Use SSH to contact
the computer at SciData.org and send it the results of the previous query. You
will receive a number (via the following special protocol) that is 1/2 of the result
you seek.” The local engine would merely evaluate the expression it receives
and in so doing, carry out the necessary actions.

5.3.2 Example 2. Suppose an end user engages a local Quanta engine to
carry out a very complex simulation. By examining the number of items in the
collections it would have to instantiate, and by looking at the functions it would
have to call, suppose the engine calculates that it does not have the resources
needed to finish the task in a reasonable amount of time. Suppose then that the
local engine contacts a supernode and merges its namespace with the part of
user’s personal namespace which is the simulation. As it happens, that object
is a running program that can be divided into many threads and which will
solve the problem. The supernode checks quotas and allocates an optimum
number of computing resources on machines that the user is authorized on to
instantiate the object. Each machine uses an engine to optimize the code it
runs for its own architecture. The supernode may relinquish the monitoring
of the task back over to the local engine, or it may allocate it to yet another
machine or supernode. However it happens, the results will be collected and
presented to the local machine in some suitable format as requested. The user

An Architecture for a Portable Grid-enabled Engine 139

can then ask that they be printed in home and work offices as a graph and have
the corresponding spreadsheet printout faxed to a colleague from the address
book. Later, the graph of the data could be inserted into a document stored in
the namespace. All of the above interactions involve only the manipulations of
a large shared Quanta namespace by the local device, the Quanta supernodes,
and the slave machines that provide Web or Grid services.

5.4 Current Status

6. Related Work

A prototype engine was constructed which implemented the major function-
ality of the Quanta engine. However, this engine suffered from a number of
problems. Among others, it could not work with streaming data and it scaled
very poorly. The version of Quanta that it processed had a purely hierarchical
namespace which was not graceful under namespace collisions – a clear disad-
vantage at the global scale. The engine was redesigned to account for lessons
learned the first time, and the Quanta language has been simplified by adhering
closer to the theory in [18]. In addition to making the core of the Quanta lan-
guage smaller, the simplification makes it handle namespace collisions more
gracefully. When the new engine is completed, formal experiments will be
designed to demonstrate its functionality.

There are a number of related projects in development which offer similar
or complementary functionality to Grid engines as proposed here. A similar
vision based on a component-oriented approach to building a generic Grid ser-
vices platform has been suggested in [21]. In this work a core collection of
components would provide a foundation of functionality to support Grid appli-
cations. Higher level components would be built upon this core. A knowledge
engine is used in order to track available resources, and a component manager
manipulates the resources to create new components. This approach has much
in common with the approach presented here; however, there are differences.
The primary difference is that our model utilizes a generic information process-
ing engine (the Quanta engine) which can create objects and perform actions
based upon Quanta descriptions in text files. This allows the knowledge engine,
the component and service managers, and the core components to be collapsed
into the Quanta engine plus several Quanta documents.

Globus (version 3) [14] is based upon OGSA Grid services and is seen as
complementary to the current project. Nimrod/G [1] is a Grid-enabled tool for
performing parametised simulations which is built upon Globus.

140 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

7. Conclusion

References

As presented in this chapter, the problem of performing an action in a hetero-
geneous environment could be solved by identifying collections of situations
which, if they obtained, would be identical with regard to a desired outcome.
Next steps involve choosing and executing by substitution one situation from
that collection which is compatible with the current host environment. This
“situation-substitution” scenario can be completed by the programmer with
conditionals, or at build-time, load-time, or runtime. Since the logic of substi-
tuting such “identicals” does not vary whatever the problem or time, rather than
creating a special tool or application for each situation, the Quanta language
can be used to specify which situation-substitutions are sufficient to instantiate
a solution to a particular task. The Quanta engine, when coded to be a Grid
engine, can be made to find optimal substitutions and make them, whether at
code-time, runtime, or at some time in-between, in the context of the global
Grid. Such a system would facilitate the use of new and legacy code in many
languages, provide an extensible, global namespace, and change the perspective
for Grid-based applications and services from that of “running on a local host
while accessing distributed resources” to “running on the Grid”.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

D. Abramson, J. Giddy, and L. Kotler. High Performance Parametric Modeling with Nim-
rod/G: Killer Application for the Global Grid?, Proc. of IPDPS, pp 520–528, Cancun,
Mexico, May 2000.

D. Box, et al. Simple Object Access Protocol (SOAP), W3C,
http://www.w3.org/TR/SOAP/, May 8, 2000.

R. Buyya, T. Cortes, and H. Jin, Single System Image (SSI), The International Journal of
High Performance Computing Applications, 15(2): 124–135. 2001.

E. Christensen, F. Curbera, G. Meredith, S. Weerawarana. Web Services Description Lan-
guage (WSDL) 1.1, W3C Note, http://www.w3.org/TR/2001/NOTE-wsdl-20010315, 15
March 2001.

K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Services
for Distributed Resource Sharing, Proc. 10th IEEE International Symposium HPDC-10,
IEEE Press, http://www.globus.org/research/papers/MDS-HPDC.pdf, pp. 181–194,2001.

K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, D. Snelling, S. Tuecke, and P.
Vanderbilt. Open Grid Services Infrastructure (OGSI), Open Grid Service Infrastructure
WG, Global Grid Forum, http://www.ggf.org/ogsi-wg/drafts/draft-ggf-ogsi-gridservice-
26_2003-03-13.pdf, March 13, 2003.

D. Fallside. XML Schema Part 0: Primer, W3C, http://www.w3.org/TR/xmlschema-0 May
2001.

I. Foster, D. Gannon. The Open Grid Services Architecture Platform, GGF-WG
OGSI, http://www.ggf.org/Meetings/ggf7/drafts/draft-ggf-ogsa-platform-2.pdf, February
16, 2003.

An Architecture for a Portable Grid-enabled Engine 141

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

I. Foster and C. Kesselman. The Globus Toolkit, In The Grid: Blueprint for a New Com-
puting Infrastructure, I. Foster and C. Kesselman (Eds.), Morgan Kaufmann Publishers,
San Francisco, California, pp. 259–278, 1999.

I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration, GGF-WG OGSI,
http://www.globus.org/research/papers/ogsa.pdf, June 22, 2002.

I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: En-
abling Scalable Virtual Organizations, Intl J. Supercomputer Applications, 15(3)
http://www.globus.org/research/papers/anatomy.pdf, pp. 200–222, 2001.

V. Getov, G. von Laszewski, M. Philippsen, I. Foster. Multi-Paradigm Communications in
Java for Grid Computing, Communications of the ACM, 44(10): 118–125, October 2001.

Globus Project, GRAM: Grid Resource Allocation and Manage-
ment, http://www.globus.org/about/events/US_tutorial/slides/Dev-06-
ResourceManagement1.pdf, 2002.

Globus Project. Status and Plans for Globus Toolkit 3.0,
http://www.globus.org/toolkit/gt3-factsheet.html February 19, 2003.

J. Hodges. An LDAP Roadmap & FAQ, http://www.kingsmountain.com/
ldapRoadmap.shtml, December 6, 2001.

K. Kennedy. Compilers, Languages, and Libraries, In The Grid: Blueprint for a New Com-
puting Infrastructure, I. Foster and C. Kesselman (Eds.), Morgan Kaufmann Publishers,
San Francisco, California, pp. 181–204, 1999.

B. Long. Quanta: a Language for Modeling and Manipulating Information Structures,
http://perun.hscs.wmin.ac.uk/pages/bruce/, December 2002.

B. Long. The Structure of Information, http://arxiv.org/abs/cs.LO/0309004, September
2003.

S. Martin. GT3 GRAM Overview,
http://wwwunix.globus.org/ogsa/docs/alpha/gram/gt3_gram_overview.htm, January 8,
2003.

L. Quin. Extensible Markup Language (XML), W3C, http://www. w3.org/XML/, February
26, 2003.

J. Thiyagalingam, S. Isaiadis, and V. Getov. Towards Building a Generic Grid Services
Platform, In: Component Models and Systems for Grid Applications, pp. 39–56, Springer,
2004.

UDDI.org. Universal Description, Discovery and Integration, UDDI Technical White Pa-
per, http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf September 2000.

III

COMMUNICATION FRAMEWORKS

DYNAMIC ADAPTATION OF PARALLEL CODES:
TOWARD SELF-ADAPTABLE COMPONENTS
FOR THE GRID

Françoise André
IRISA/Université de Rennes 1
Rennes, France

Francoise.Andre@irisa.fr

Jérémy Buisson and Jean-Louis Pazat
IRISA/INSA
Rennes, France

Jeremy.Buisson@irisa.fr
Jean-Louis.Pazat@irisa.fr

Abstract

Keywords:

One of the challenges that come from the emergence of Grid architectures is to
invent new programming techniques for these new platforms. As we explain
in this chapter, we think that the architecture of the applications should reflect
both the parallel and the distributed aspects of Grid architectures. It results in
applications built as assemblies of parallel components. Since Grid architectures
are known to be highly dynamic, using resources efficiently on such architectures
is a challenging problem. Software must be able to react dynamically to the
changes of the underlying execution environment. In order to help developers to
create software for the Grid, we are investigating a model for the adaptation of
parallel components. This chapter focuses on the adaptation mechanisms that are
provided as a meta-level for components. We describe how a generic platform
can help to develop efficient Grid software. First experimental results show the
gain that can be expected from the use of such a platform.

dynamic self-adaptation, parallelism, reflexive programming.

146 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

1. Introduction

Research in Grid computing mainly focuses on the development of middle-
ware and services allowing applications to use various distributed resources.
Infrastructures and toolkits such as OGSA [3] and previously Globus [5] pro-
vide tools allowing naming and discovery of resources; they also provide the
necessary services for applications to deal with the underlying heterogeneity of
the Grid. Those projects provide the users with useful tools for deploying and
running applications without explicitly dealing with the various batch queues,
communication libraries and so on, installed on the local sites.

Although resource allocation and scheduling are taken into account, these
tools give no help for applications to make efficient use of the available Grid
resources at run time. Due to the dynamic nature of the Grid, it is also very
hard to design an application that fits well with any configuration of the Grid.
Moreover, constraints such as the number of available processors, their respec-
tive load level, available memory and network bandwidth are not static. The
bandwidth between sites running some parts of the same application may vary
during the execution time or some processors may be requested by other ap-
plications. For example, the CPU manager described in [8] may dynamically
change the number of processors allocated to each application. We think that
in many cases, application performance can be greatly improved when any part
of an application can take into account varying resources eg. is able to adapt
its behavior to “environmental changes”.

Because Grid applications are also quite complex, many approaches now rely
on service-oriented technologies such as OGSA [3] or on component-based ap-
proaches [11] such as CCM [9]. This helps building reusable software. Within
these programming techniques, one of the main issue is the so called “sepa-
ration of concerns” paradigm. Entities implementing distinct functionalities
should be located in different modules, objects, services or components. In the
remaining of this chapter, the term “component” stands for any of these kinds
of pieces of application.

Our work focuses on the problem of adapting parallel codes encapsulated
in components to varying constraints on resources. In this chapter, we show
how to combine parallel programming and adaptation techniques in a unified
framework. As a first step, this chapter focuses on the adaptation of the inner
parallel code of a component. In Section 2, we describe parallel objects and
parallel components. Section 3 is devoted to the presentation of adaptation
techniques in the context of scarce resources, putting the emphasis on the de-
scription of the ACEEL framework. Section 4 presents the application model
we consider. Section 5 explains how we transpose adaptation models to the
parallel case to build a unified framework. The results of our experiments are

Dynamic Adaptation of Parallel Codes 147

given in Section 6. As a conclusion, we describe the main steps of our ongoing
work.

2. Parallel Distributed Objects for the Grid

3. Dynamic Adaptation of Components

During the last decade, improvements have been made in terms of soft-
ware reusability when object then component technologies appeared in many
application fields other than high performance computing. Because Grid archi-
tectures are complex, heterogeneous and dynamic, they make the development
of parallel applications more complex. Now, it becomes necessary for high per-
formance applications to adopt technologies enforcing code reusability. Well-
known component models such as CCM or Enterprise Java Beans should be
a good basis but they were not designed with performance and parallelism in
mind, so they have not been able to take into account High Performance Grid
applications.

In order to improve these environments, several projects have studied how
parallel code could be encapsulated within objects or components. Projects such
as PARDIS [7] and PaCO++ [2] have focused on increasing performances of
parallel distributed objects. They consider a parallel object as a set of identical
sequential objects. The same definition also applies to GridCCM [10] within
the component world.

Those projects allow to encapsulate SPMD code into so called “high per-
formance CORBA objects/components”. When a parallel object/component
has to process a remote call, each process executes one part of the processing
related to one part of the data set. The parallelism comes from the distribution
of the parameters.

In order to get some performance out of high-speed networks, an enhanced
request protocol has been defined among parallel objects/components: servers
allow their clients to “see” their internal structure and distribution at run time.
This allows parallel clients to send data directly from the source process to the
target process: data do not need to be received/sent by a single master object.
This multi-port communication mode allows to use the aggregated bandwidth,
which can be higher than if only one centralized communication port was used.

These approaches have shown that it is now possible to use component-based
techniques for programming high performance applications on the Grid without
loosing performance. The next step is to be able to have components that are
more flexible to allow the adaptation (not only the configuration) of parallel
codes.

In the area of wireless computing and mobile environments where resources
are a key issue, many techniques of dynamic adaptation have been developed:

148 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

from the observation of the environment, codes can adapt their behavior to fit
the resource constraints. This adaptation can be achieved in many different
ways ranging from a simple modification of some parameters to the complete
exchange of the running code with a new one that is more suited to the envi-
ronment.

The adaptation could be achieved by designing ad hoc applications that take
into account the specificities of the targeted environment. For example, this
was done for the Web applications access protocol on mobile networks by
defining the WAP protocol [12]. A more general way to allow an application
to evolve according to its environment is to provide mechanisms that permit
dynamic self-adaptation by changing the behavior depending on the currently
available resources. In many cases, this has been achieved by embedding the
adaptation mechanism within the application code. For example, the AdOC
compression algorithm [6] includes such a mechanism to change dynamically
the compression level according to the available resources. However, it is
desirable to separate the adaptation engine from the application code in order to
make the code easier to maintain and to easily change or improve the adaptation
policy. In this case, a framework that provides generic mechanisms for the
adaptation process and for the definition of the adaptation rules is needed. This
is the case for example of the ACEEL framework.

Figure 1. Architecture of an ACEEL component

Dynamic Adaptation of Parallel Codes 149

ACEEL [1] is a generic framework for self-adaptable components that allows
the developer to focus on the implementations of the functionalities of his
component and on its adaptation policy: it separates the adaptability aspect
from the functional part of the component, as shown by the architecture of an
ACEEL component in Figure 1. Based on the Strategy design pattern [4], the
component offers a set of possible implementations, called behaviors. At any
time, only one behavior is active: the one that processes the incoming requests.
The generic adapter meta-object decides which of the available behaviors the
best to use according to the environment is. To help the adapter object to
decide, the component developer provides a policy as a set of event-based
rules: each rule is a triggering change of the environment associated with a
reaction, which might be either the activation of another behavior or the tuning
of some parameters. When a change in the characteristics or availability of a
resource happens, the monitoring engine notifies the adapter of the components
that depend on this resource for their adaptation policy. The context holds the
state of the component. Separating the state from the implementation makes it
easier to replace dynamically the implementation of the component.

4. A Programming Model for Grid Applications
The applications we target in our project are “Grid applications”; they may be

composed of several parallel codes, so in our model, an application is considered
to be built as an assembly of components. Each component is deployed on a
site that is a parallel machine such as a cluster. As a first step, we focus on
the deployment and execution of one component and we do not investigate the
relations between components. In our model, each component is both parallel
and adaptable.

A component is parallel: this means that it is composed of a number of
internal processes working together to execute a given service. These processes
communicate between each other using a communication library such as PVM
or MPI or through a distributed shared memory. Here, we do not require
specifying how those processes are encapsulated within the component: this
aspect relies on constraints of existing components platforms such as GridCCM.

A component is adaptable: the platform where components are deployed can
monitor the resources of the deployment site and allow any component to react
to any change in the state of the resources.

We think that it makes sense to allow one single component to adapt itself
dynamically in most Grid environments for two main reasons. First, one char-
acteristic of Grid architectures is that sites are administrated independently one
from another and of the users of the Grid. It is thus possible that the site into
which the component is deployed is modified while the component is running.
Secondly, in a longer term, we can consider component migration as a spe-

150 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

cial case of adaptation. Because the sites implied in the migration may have
different characteristics, the adaptation of the component will be needed.

5. Adaptation of Parallel Components

5.1 Component Structure

5.2 Semantics of Adaptation Points

A parallel self-adaptable component is a component that is composed of sev-
eral processes working together and that is able to change its behavior according
to the changes of the environment.

The structure of parallel self-adaptable components includes an adaptation
policy, a set of available implementations, called behaviors, and a set of reaction
steps.

The purpose of the adaptation policy is to define when the adaptation mech-
anism should be triggered and what should be the associated reactions. It is
mostly a set of event-based rules. Each rule associates a reaction to a specific
event. Events represent any change in the state of the environment. For ex-
ample, an adaptation policy can include the rule: “if the number of nodes is
increased, spawn new processes and redistribute arrays”. This rule shows both
the trigger event and the associated reaction.

Behaviors are implementations of the component. Each behavior differs
from the others in the way it uses resources and/or in the algorithm used. Each
behavior of a component implements the whole interface of the component;
they just use different ways. The active behavior is the one used to process the
incoming requests. The expression “functional code” denotes any code that is
productive and that resides in the behaviors.

Reaction steps are the means by which the component adapts itself. It can
be for example the replacement of the active behavior, the tuning of some
parameters, or the redistribution of arrays. These pieces of code are dynamically
inserted in the execution flow when the component adapts itself. Reactions must
ensure that they leave the component in such a consistent state that the execution
can resume and lead to the same result than if no reaction has been executed.

Because reactions must enforce the consistency of the component, reaction
steps cannot be inserted at any time in the execution flow. In order to specify
the places at which the component is able to adapt itself safely, we define the
notion of adaptation point.

An adaptation point is an annotation in the code that indicates where the
component can be safely modified. The developer indicates that the behavior
is able to suspend in a consistent state and to resume from this state at an

Dynamic Adaptation of Parallel Codes 151

adaptation point, no matter which behaviors and reaction steps combination
leads the component to that state.

The platform enforces the mutual exclusion between the functional code
and reactions: it ensures that reactions might only be executed when the func-
tional code is suspended at an adaptation point. Adaptation points are thus the
moments at which reaction steps can be inserted in the execution flow.

Reaction steps must ensure that if the state of the component is consistent,
it remains consistent after the execution of the whole reaction. The scope of
this consistency includes both the variables of the component and the active
behavior. This means that the functional code should not be able to determine
whether a particular reaction step has been executed at a particular adaptation
point. Adaptation points are almost invisible to the functional code.

An adaptation point is said active when a reaction is scheduled at that adap-
tation point. Otherwise, the adaptation point is said inactive.

5.3 Introducing Global Adaptation Points
Because several processes may collaborate during a single reaction, they need

to be synchronized and coordinated. As for global consistent states in distributed
systems, some of the combinations of adaptation points do not represent valid
states at which the component is able to adapt itself.

Adaptation points are local to each process; so are the annotated states. For
that reason, adaptation points are not sufficient to specify states at which the
whole behavior can be modified. This is why the developer has to give explic-
itly a compatibility relationship between the adaptation points of each process
of the behavior in order to allow the platform to find consistent states. The
platform enforces the fact that reactions can only be executed when all the pro-
cesses are suspended on adaptation points that are compatible with each other.
Those global adaptation points specify global states at which the component is
able to adapt itself, global states at which the developer permits the adaptation
mechanism to be executed. Our model only specifies the semantic of global
adaptation points: the developer should place them to indicate the global states
at which he thinks the adaptation can occur safely.

5.4 Building a Host Platform

We consider that modern programming techniques should conform to the
“separation of concerns” paradigm. For this reason, we think that adaptability
should be a service given by the platform that hosts the component is deployed.
Figure 2 shows the overall architecture of a platform hosting a parallel self-
adaptable component.

The platform mainly provides two kinds of objects: the decider and the
coordinators. The decider is the object that makes the decisions: it decides when

152 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 2. Overall architecture of a parallel self-adaptable component

(events to watch) and how (reactions to execute) the component should adapt
itself according to the adaptation policy. It bases its decisions on the reports
given by the monitors that are interfaced with the platform. The monitors
are daemons that track and report changes in the state of the environment.
The coordinators execute the directives given by the decider: they serve as
intermediaries between the code of the component and the platform. Their role
is to synchronize the adaptation mechanism with the functional code and to
coordinate the execution of the reactions.

When a monitor detects a change in the state of the resources it watches,
it notifies the decider. The decider then interprets the given adaptation policy.
During this step, the decider might query the monitors for a detailed report on
the state of the resources. If it concludes that there is no need to adapt, it stops
the adaptation process until the next notification from a monitor; otherwise, it
broadcasts its decision to the coordinators, which decide collectively when the
reaction is effectively executed. This is done by selecting a global adaptation
point - and activating the corresponding adaptation point of each process. Once
a process reaches an active adaptation point, its coordinator executes the reaction
chosen by the decider.

Dynamic Adaptation of Parallel Codes 153

6. Experimental Results

In order to validate the feasibility of our approach, we have built a prototype
platform that partially implements the model we have proposed.

6.1 Test Platform

The test platform we developed implements a subset of the model. It con-
centrates on SPMD applications. The adaptation points we implemented allow
to execute user-defined reaction.

Although the application we use in our tests seems simple, it is sufficient
to show that our adaptation model works well with parallel applications with-
out significant performance degradation. Our application is a generic vector
iteration that distributes its vectors using a block scheme. It uses MPI for its
communications. Its adaptation policy is to use as many nodes as the moni-
tor reports: it spawns new processes when nodes are added to the system and
terminates the processes that use nodes reclaimed by the system. Because the
MPI implementation we use cannot dynamically spawn or terminate processes,
the application starts with a fixed number of processes, but uses only the re-
ported number. For this reason, we simulate the monitoring of the number of
available processors; this also allows us to have full-control over the adaptation
mechanism. We place one adaptation point between iterations.

6.2 Gain of the Adaptation

In this experience, once the application has been started, the number of
available nodes is increased from four to six. Figure 3 shows the elapsed time
at the end of the iterations. The execution of the reaction occurs between
iterations 12 and 13; this appears as a break on the curve. This figure shows
that several iterations are needed in order to balance the cost of the execution
of the reaction. In the long term, the gain of the adaptable version over the
original application is substantial. The amount of iterations needed before the
adaptable version becomes effectively better depends on the reaction that has
been executed and on the component itself.

6.3 Overhead of the Adaptation Platform
We compared the execution time of the original application and of its adapt-

able version in a totally static environment. The difference linearly depends
on the number of encountered adaptation points. It shows the time needed to
initialize the platform and the execution time lost in adaptation points. The
execution time overheads are shown in Table 1, depending on the number of
encountered adaptation points. This measure is very noisy. The execution time
lost in each adaptation point seems constant at about 0.3 seconds.

154 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 3. Execution time of an adaptable application (in seconds)

6.4 Ease of Use

Our prototype assumes that the application is iterative and that adaptation
points only reside between iterations. The reason is that it makes it easier to
build the state of spawned processes. However, our model does not impose
such a restriction.

One of the hardest questions to answer to when using the platform is the
placement of adaptation points and their frequency. For our experiments, we
arbitrarily place one adaptation point per iteration, but there was no a priori
reason for doing so. Having many adaptation points makes the application
more reactive to environmental changes at the cost of an increased overhead.

Dynamic Adaptation of Parallel Codes 155

7. Conclusion

In this chapter, we have shown that the idea of combining a dynamic adap-
tation framework with parallelism and distribution is a promising way for ef-
ficiently programming the Grid. We have built a prototype that extends the
ACEEL adaptation engine to take into account the parallelism that can reside
in components. This allowed us to experiment our ideas.

Our model complies with the separation of concerns paradigm, since it com-
pletely separates the adaptation mechanism from the functional code of the
component. Moreover, it provides a basis for the dynamic adaptation of paral-
lel code, whereas many projects have focused on their configuration at startup.
This separation allowed us to experiment our idea without integrating a full-
featured component platform. However, we expect that building application
using a component infrastructure help doing the adaptation. Indeed, contain-
ers offered by the component infrastructures are a privileged place into which
non-functional services (such as security or adaptation) should reside. Those
containers also help doing the adaptation with their introspection ability.

In our ongoing works, we plan to define more formally the properties that the
component is required to satisfy in order to be able to adapt itself. This includes
the properties of global states where an adaptation can occur. The constraints
on behavior replacement should also be investigated. The goal of those studies
is to help the developer when establishing constraints on the adaptation. We
expect this will allow to detect automatically valid adaptation points or at least
to check that the points specified by the developer are correct.

Studying the relationship between fault tolerance systems that use check-
pointing and adaptation in the context of Grid computing is an important per-
spective. Firstly, finding shared properties between checkpoints and adapta-
tion points would be of great help in establishing properties and constraints
on adaptation point placement. Secondly, fault tolerant systems suppose that
the execution environment is dynamic since any fault results in changes in the
environment. Keeping in mind fault-tolerance related works seems a natural
approach since they share with adaptation the need to find “special points” at
which the execution can resume. However, fault tolerance systems try to repair
faults rolling-back the execution, whereas adaptation does its best until the code
is able to react.

By the time, we have only studied the overall architecture for the adaptation
of parallel codes. Our work is currently focusing on how to choose the global
adaptation point at which the reaction steps should be executed. This work is
going to lead to the definition of an algorithm to suspend the execution in a
well-defined point without rollback.

We have no precise idea of the overhead required from the developer to
make a component able to adapt itself using a generic framework. However,

156 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

several examples exist of parallel codes made dynamically adaptable in an ad-
hoc way and we expect that having a generic framework simplifies the task of
the developer. In order to have a reasonable opinion about this subject, we plan
to study how several parallel and distributed codes can be made self-adaptable.
In particular, we think of how parallel discrete event simulators can be modified
to adapt itself to the execution environment. We expect from these experiments
to get a measurement of the work such a goal needs.

References
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

D. Chefrour and F. André. Développement d’applications en environnements mobiles à
l’aide du modèle de composant adaptatif aceel. In Langages et Modèles à Objets LMO’03.
Actes publiés dans la Revue STI, série L’objet, volume 9, Vannes, France, February 2003
(in French).

A. Denis, C. Pérez, and T. Priol. Portable Parallel CORBA Objects: An Approach to
Combine Parallel and Distributed Programming for Grid Computing. In Proc. of the
7th Intl. Euro-Par’01 Conference (EuroPar’01), LNCS, 2150:835–844, Springer, August
2001.

I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration. In Global Grid Forum,
June 2002.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-oriented Software. Addison Wesley, 1998.

Globus Toolkit, http://www.globus.org.

E. Jeannot, B. Knutsson, and M. Björkman. Adaptive Online Data Compression. In 11th
IEEE International Symposium on High Performance Distributed Computing (HPDC-11
2002), pages 379–388. IEEE Computer Society, 2002.

K. Keahey and D. Gannon. PARDIS: A parallel Approach to CORBA. In HPDC, pages
31–39, 1997.

X. Martorell, J. Corbalán, N. Navarro, and J. Labarta. The NANOS Resource Management
System. In 4th Operating System Design and Implementation (OSDI 2000), 2000.

Object Management Group. Corba Components, June 2002. Document formal/02-06-65.

C. Pérez, T. Priol, and A. Ribes. A Parallel CORBA Component Model for Numerical Code
Coupling. In Proc. 3rd International Workshop on Grid Computing, LNCS, 2536:88–99,
Springer, November 2002.

C. Szyperski. Component Software: Beyond Object Oriented Programming. Addison
Wesley, 1998.

Wireless Application Protocol 2.0: Technical White Paper. http://www.wapforum.org,
January 2002.

HOCS:
HIGHER-ORDER COMPONENTS FOR GRIDS

Martin Alt, Jan Dünnweber, Jens Müller, and Sergei Gorlatch
Institut für Informatik
University of Münster
Germany

mnalt@math.uni-muenster.de
duennweb@math.uni-muenster.de
jmueller@math.uni-muenster.de
gorlatch@math.uni-muenster.de

Abstract

Keywords:

We present HOCs – Higher-Order Components – that provide the Grid applica-
tion programmer with reusable and composable patterns of parallelism. HOCs
can be viewed formally as higher-order functions, i.e. a generic implementation
of a HOC on a remote machine can be customized with application-specific code
parameters which are supplied by the user and shipped via the network. We take
the well-known “Farm of Workers” pattern as our motivating example, present
an experimental implementation of the Farm-HOC as a Grid Service using the
Globus Toolkit, and report first measurements for a case study of computing
fractal images using the Farm-HOC.

Grid services, WSRF, Globus toolkit, code mobility

158 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

1. Introduction
This chapter addresses the important and difficult problem of simplifying

the programming of Grid applications. Our foremost goal is a high-level pro-
gramming model which would shield the application programmer from the
low-level details of heterogeneous and highly dynamical Grid environments,
thus allowing to concentrate on algorithmic and performance issues.

The presented work in progress originates from the following two veins of
previous research: 1) Component-based software development [11], with the
major goals of reuse and compositionality, and 2) Skeleton-based program-
ming [2], aiming at identifying and abstracting typical patterns of parallel
computing. We introduce a new kind of components – HOC (Higher-Order
Components), which can be parameterized with application-specific code – and
discuss both their use and implementation in the contemporary Grid context of
OGSA/WSRF [3] and the Globus Toolkit [6].

The particular contributions and structure of the chapter are as follows. Sec-
tion 2 motivates and introduces HOCs and explains their use in a Grid en-
vironment. In Section 3, we describe an exemplary implementation of the
Farm-HOC using the Globus Toolkit. Section 4 presents an application case
study of computing fractal images, programmed using the Farm-HOC, and re-
ports first experimental results on our Grid testbed. We compare our results to
related work in Section 5.

2. HOCs: Motivation and Use for Grids

Components, as described by e.g. [11], capture common programming pat-
terns as independent, composable program units and present a high-level API
to the application programmer, hiding hardware specific details. Among other
benefits (e.g. separation of concerns), an important advantage of using compo-
nents is code reuse: different applications requiring common functionality can
share a common component implementing that functionality.

Our motivation for higher-order components (HOCs) is that components for
parallel computing often need to be parameterized not only with data but also
with application-specific code. An example for such a component is the Farm
pattern of parallelism, where an application problem is divided into several
independent subtasks, which are computed by different Workers in parallel.
This pattern is very common, e.g. for image processing applications, where an
image is divided into several segments and each segment is processed indepen-
dently by a worker. Instead of re-implementing this pattern for different image
processing algorithms, it would be more efficient to provide a generic Farm-
HOC, which implements the distribution of the input data across processors,
the initialization of workers and finally collecting the results in an application-
independent manner. The code for the image processing by the workers can be

HOCs: Higher-Order Components for Grids 159

provided by the application programmer as an application-specific parameter
when the Farm-HOC is invoked.

2.1 Grid Programming Using HOCs
The idea of Grid application programming using HOCs is illustrated in

Figure 1. The hosts in the Grid provide architecture-tuned libraries of time-
intensive HOCs and offer them in the form of Grid Services. An application
developer expresses the application in terms of the available HOCs and imple-
ments the necessary code parameters (denoted A, B,… in the figure). To make
the application-specific parameters available to the hosts, the parameters are
then stored to a code base (step in the figure) accessible by the hosts.

Figure 1. Grid application programming using HOCs

When the application is executed on the client, the used HOCs are called
remotely on high-performance Grid hosts (step in the figure: the client calls
component HOC1 with code parameters A and B); application-specific data and
references to code parameters in the code base are passed as arguments. The
host checks if the application specific code parameters are available locally and,
if they are not, retrieves the code from the code base Once the application
specific code is available on the host, it is linked to the HOC implementation in
the library and the instantiation of the HOC with the provided code parameters
is executed

The implementation of a HOC consists of two parts: a) a set of interfaces
specifying the signatures of the HOC’s parameters, and b) server-sided interface

160 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

implementations. Since code parameters for a HOC carry method implementa-
tions, the signature of each parameter (method’s name, types of the arguments
and the result) must be provided by the HOC developer to enable the method
for remote invocation.

Figure 2 shows simplified interfaces for the Farm-HOC in Java notation.
There are two code parameters: 1) the Master that splits the input data in
an application-specific manner for distribution among the workers, and 2) the
Worker that processes a unit of data in an application specific manner.

Figure 2. Simplified interfaces for the Farm-HOC.

TheFarmHOC interface is implemented in a hardware-specific way as a Grid
Service that resides in a particular Grid host’s HOC-library. The implementa-
tion of the Farm-HOC uses the Master and Worker interfaces, which are im-
plemented on the client side in an application specific, hardware-independent
manner.

To develop an application using HOCs, the application programmer first
identifies the HOCs suitable for the application and expresses the application
in terms of the selected HOCs’ interfaces. When the application is executed,
Grid hosts implementing the HOC interfaces are selected at runtime (either
automatically or by the user), using a lookup service.

2.2 Introducing Code Mobility to OGSA
Because HOCs are implemented on Grid hosts while the application-specific

customizing code (parameters) reside on clients, HOCs require facilities for
code mobility, i.e. shipping code from clients to servers and executing it there.
Code mobility mechanisms are currently available in Java/RMI based dis-
tributed computing technologies like Jini or JXTA. However, the communi-
cation protocols used by RMI are often unable to pass through firewalls and
Internet-proxies in a Grid environment. Additionally, using RMI for communi-
cation would reduce our language choice to Java. In contrast, Grid Services, as
proposed by OGSA/OGSI, are suitable for Internet-wide applications, allowing
communication across firewalls and proxies. Grid Services use standard XML-
languages for remote procedure calls and interface descriptions, namely SOAP
and WSDL. Therefore, it is possible to combine Grid Services developed in
different programming languages.

HOCs: Higher-Order Components for Grids 161

Since OGSA does not define any standard implementation for code mobility,
we propose to extend the Grid Services design suggested by OGSA/WSRF by
a corresponding mechanism. In comparison to RMI, the SOAP mechanism
used by Grid Services is more restrictive: it is not possible to pass an object
of any type that cannot be expressed using an XML-schema. Therefore, SOAP
parameters may consist of primitives or some kind of data record that may be
declared in a class-like manner, but code in form of a method implementation
cannot be transferred.

Figure 3. Code mobility mechanism for enabling HOCs

We implement code mobility in OGSA in the following way (shown in Fig-
ure 3 for the Farm-HOC). The application programmer stores the implementa-
tion of code parameters for HOCs to a code base, and the HOC implementation
on the server retrieves the implementation later from there. The code base itself
is integrated into the system as a Grid Service providing a store method for
the clients and a retrieve method for servers. When a client stores code to
the code base, it uses a unique name (analogous to the Grid Service Handles
used in Globus) to identify the stored code. This name (“WorkerID” in the
figure) is then passed to the HOC as a parameter upon invocation. The HOC
implementation uses this name to retrieve the code from the code base service.
Finally, the code is linked to the server sided HOC implementation and the
execution of the HOC can be initiated.

The proposed code mobility mechanism assumes that the code for a HOC
parameter is executable on the HOC host. This can be achieved either by
using portable code for the parameters (e.g. Java Bytecode or an interpreted
language such as Python), or by sending the parameters as source code (e.g. C
or C++) and compiling them to machine code on the HOC-host. This requires an
advanced infrastructure, capable of handling compilation errors at runtime, etc.
We have recently developed a prototype that allows for remote compilation
of code parameters via a portal; a detailed description of this feature is in
preparation. Another possibility is to compile the parameter for the HOC-

162 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

host’s processor type on the client, using a cross-compiler, and to store the
machine code to the code base.

For reasons of simplicity we have chosen to use Java in our experimen-
tal implementation. For server-sided HOCs, we implemented a code loading
mechanism based on a remote class loader, which replaces the Java default class
loader when needed and connects to the code base service instead of searching
class files on the local hard disc when new classes are loaded. Once the bytecode
for a particular class is retrieved from the code base, the class is instantiated
using the Java reflection mechanism.

3. Implementing the Farm-HOC in OGSA

As a proof-of-concept implementation, we developed a Farm-HOC as a com-
bination of two Grid Services: 1) a Farm Service, of which a single instance
distributes the computations for the Farm-HOC. 2) a Worker Service, which is
instantiated several times to perform a single computation. The detailed dis-
cussion of the service architecture for HOCs (HOC-SA) goes beyond the scope
of this chapter and is presented in [5].

Figure 4. Farm-HOC processing in OGSA

Figure 4 shows the computation and communication steps in the OGSA-
based Farm-HOC processing. The Client firstly obtains a Farm Service instance
from the so-called HOC Factory which exploits the factory design pattern in
the typical OGSA-like manner. To start calculations, the client communicates
with the Farm Service which is a kind of facade for the whole Farm-HOC.
The Farm Service obtains the Worker Services from the corresponding Factories

creates and distributes the sub-tasks of calculation and reassembles
the result which finally is returned to the client This way, the Farm Service

HOCs: Higher-Order Components for Grids 163

hides all the distributed interactions in the Grid and provides a lean interface
for the complete Farm-HOC.

Parallelism in the Farm-HOC is achieved by starting a new thread (taken
from a thread pool) for each worker, which sends back a notification to the
Farm Service upon completion of the calculation.

An advantage of HOCs is that all the cumbersome implementation work in
Globus needs to be done only once for each HOC. despite the simplicity of the
farm-hoc, its implementation using the currently available Globus Toolkit has
required several laborious steps, which are difficult for an application program-
mer: 1) defining remote interfaces for the Farm Service and the Farm-Worker
Service using a Globus specific configuration file (GWSDL file), 2) imple-
menting the services using the Globus Toolkit APIs, 3) writing a deployment
descriptor in another Globus specific configuration file (WSDD file) 4) creating
an archive (GAR), containing the services and configuration files in a Globus-
specific hierarchy, 5) setting up a runtime environment at all remote hosts and
deploying the services there. It is an advantage of our approach that these steps
are not done repeatedly by application programmers, but rather accomplished
once for a HOC.

Figure 5. Farm Customization and Invocation Using the Farm-HOC

Figure 5 shows how the application programmer uses the Farm-HOC. The
application starts by requesting a new instance of the Farm-HOC from the
FarmHOC factory (line 1). Line 2 passes references to the application-specific
code parameters (as specified by the interfaces in Figure 2) in the code base to
the HOC-instance. In lines 3 and 4, the hosts for both master and workers are
selected. The HOC is then invoked to process input data on the Grid (line 5).

4. Case Study: Calculating Julia Sets

As an application of our Farm-HOC, we calculate so-called Julia Sets, a
special kind of fractal image. Julia Sets are computed by applying a given
function to each point of the complex plane (within a certain range). This
function is then iterated to produce a sequence of complex numbers that may
diverge or converge; the sequence’s degree of growth determines the color
assigned to a particular point in the plane. The computation is a dynamic
process that requires different amounts of time for different points.

164 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

4.1 Using Farm-HOC
The calculation process can be applied to each point independently, which al-

lows a straightforward parallelization by dividing the plane into rectangles and
distributing the computations among processors. To implement this schema
using our Farm-HOC, the application developer needs to provide a master and
a worker implementation (the latter is shown in Figure 6).

Figure 6. Example Worker Parameter for the Farm-HOC

The code shown in Figure 6, which is uploaded and stored in the code base,
is used to instantiate the Farm-HOC in line 2 of Figure 5.

Our Farm-HOC implementation allows for a simple self-scheduling strategy.
A Worker is implemented using multiple threads taken from a thread pool, so it
can process parts of the input in parallel itself. Now, if the tasks are unequally
balanced on a compute node, a worker thread that has been suspended early
will immediately free resources for the thread which is processing a more time-
intensive task.

4.2 Experimental Results

Table 1 shows the results of preliminary tests conducted with the Farm-
HOC. Our experimental Grid testbed consists of one host in Münster running
the master implementation, and up to three remote multiprocessor hosts in
Berlin (at a distance of 500 km), each running multiple parallel workers. The
underlying TCP/IP network has the bandwidth of 1 Mb/s and the latency of 25
ms.

The server in Münster was a Linux PC (Pentium 4 running at 2.6GHz) and the
remote servers were SunFire multiprocessors (running Solaris with 4, 8, and 12

HOCs: Higher-Order Components for Grids 165

processors correspondingly). For Julia Sets, all tasks have different time costs
and the compute hosts have different computing power, so the scaling behavior
is not regular. Nevertheless, the results show that the application does scale.
The variations in multiple measurements were low. The sequential time of a
local evaluation on the PC was more than five times higher than using a remote
server with 4 processors.

Another result of experiments was that transferring the result via SOAP takes
much time (about 60 sec), due to the complexity of the SOAP encoding. We
plan to exploit GridFTP using Java CoGs [13] to reduce this time.

5. Related Work

Our work is one of the current efforts on hiding the complexity of Grid-aware
application development (a good overview can be found in [7]). Related work
includes the Ibis programming system [12], the skeleton library Lithium [4],
and the ProActive [1] system, all three based on Java/RMI, and the PaCO++ li-
brary based on the CORBA communication mechanism [9]. Another approach
in providing a high-level programming interface to the Grid application devel-
oper, that does not have its origins in skeletal programming is GridRPC [10].
The GridRPC API is composed of a collection of lightweight C-functions, to
perform simple remote procedure calls in Grid systems like Ninf or NetSolve.
They communicate using non-XML proprietary protocols that are partially more
efficient than SOAP though not OGSA-compliant. Our object-oriented HOCs
are designed to be used in the OGSA, so they use Java together with Globus to
ensure interoperability. Higher-order components allow to free the application
programmers from much of the complexity when using the current version of
the Globus Toolkit implementation described e.g., in [8].

6. Conclusions

The higher-order components (HOCs) proposed in this chapter provide the
application programmer with a high-level programming interface for OGSA-
based Grid programming. They ensure the separation of concerns between the
system programmers who develop and implement HOCs and the application
programmers who use HOCs by instantiating them with code parameters. The
implementation of the Farm-HOC has demonstrated that such components are
reusable in different applications and offer promising performance. We are
in the process of introducing and implementing new HOCs. They will include
components that encapsulate task-parallelism and also communication between
nodes, rather than the simple completion notifications as in the Farm-HOC.

166 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

L. Baduel, F. Baude, and D. Caromel. Efficient, Flexible, and Typed Group Communi-
cations in Java. In Proceedings ofACM JavaGrande ISCOPE 2002 Conference, pages
28–36, ACM Press, November 2002.

M. I. Cole. Algorithmic Skeletons: A Structured Approach to the Management of Parallel
Computation. Pitman, 1989.

K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D. Snelling,
S. Tuecke, and W. Vambenepe. The WS-Resource Framework, May 2004.
http://www.globus.org/wsrf/.

M. Danelutto and P. Teti. Lithium: A Structured Parallel Programming Enviroment in
Java. In Proceedings of Computational Science - ICCS, LNCS, 2330:844–853, Springer,
April 2002.

J. Dünnweber and S. Gorlatch. HOC-SA: A Grid Service Architecure for Higher-order
Components. In Proceedings of the 2004 IEEE International Conference on Services
Computing (SCC 2004), Shanghai, China. IEEE Computer Society Press, September
2004 (to appear).

Globus Alliance. Globus Toolkit http://www.globus.org/toolkit/.

D. Laforenza. Grid Programming: Some Indications Where We Are Headed. Parallel
Computing, 28(12): 1733–1752, December 2002.

G. Mair and A. Villazón. Implementing a Distributed Master/Slave Grid Service with
Globus Toolkit 3 (GT3). http://dps.uibk.ac.at/~gregor/mandel.pdf.

C. Pérez, T. Priol, and A. Ribes. PaCO++: A Parallel Object Model for High Performance
Distributed Systems. In Proceedings of the Conference on System Sciences (HICSS-37).
IEEE Computer Society Press, January 2004.

K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, and H. Casanova. Overview of
GridRPC: A Remote Procedure Call API for Grid Computing. In M. Parashar, editor, Grid
Computing - GRID 2002, Third International Workshop, LNCS, 2536:274–278, Springer,
November 2002.

C. Szyperski. Component Software: Beyond Object-oriented Programming. Addison
Wesley, 1998.

R. V. van Nieuwpoort, J. Maassen, R. Hofman, T. Kielmann, and H. E. Bal. Ibis: an
Efficient Java-based Grid Programming Environment. In Proceedings of ACM JavaGrande
ISCOPE 2002 Conference, pp. 18–27. ACM Press, November 2002.

G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java Commodity Grid Kit. Con-
currency and Computation: Practice and Experience, 13(8-9):643–662, 2001.

THE COMPONENT ARCHITECTURE
OF OPEN MPI:
ENABLING THIRD-PARTY
COLLECTIVE ALGORITHMS*

Jeffrey M. Squyres and Andrew Lumsdaine
Open Systems Laboratory
Indiana University
Bloomington, Indiana, USA

jsquyres@open-mpi.org
lums@open-mpi.org

Abstract

Keywords:

As large-scale clusters become more distributed and heterogeneous, significant
research interest has emerged in optimizing MPI collective operations because
of the performance gains that can be realized. However, researchers wishing to
develop new algorithms for MPI collective operations are typically faced with sig-
nificant design, implementation, and logistical challenges. To address a number
of needs in the MPI research community, Open MPI has been developed, a new
MPI-2 implementation centered around a lightweight component architecture
that provides a set of component frameworks for realizing collective algorithms,
point-to-point communication, and other aspects of MPI implementations. In this
chapter, we focus on the collective algorithm component framework. The “coll”
framework provides tools for researchers to easily design, implement, and exper-
iment with new collective algorithms in the context of a production-quality MPI.
Performance results with basic collective operations demonstrate that the com-
ponent architecture of Open MPI does not introduce any performance penalty.

MPI implementation, parallel computing, component architecture, collective al-
gorithms, high performance

*This work was supported by a grant from the Lilly Endowment and by National Science Foundation grant
0116050.

168 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

1. Introduction

Although the performance of the MPI collective operations [6, 17] can be
a large factor in the overall run-time of a parallel application, their optimiza-
tion has not necessarily been a focus in some MPI implementations until re-
cently [22]. MPI collectives are only a small portion of a production-quality,
compliant implementation of MPI; implementors tend to give a higher priority
to reliable basic functionality of all parts of MPI before spending time tuning
and optimizing the performance of smaller sub-systems.

As a direct result, the MPI community has undertaken active research and
development of optimized collective algorithms. Although design and theoret-
ical verification is the fundamental basis of a new collective algorithm, it must
also be implemented and used in both benchmark and real-world applications
(potentially in a variety of different run-time / networking environments) before
its performance can be fully understood. The full cycle of design, development,
and experimental testing allows the refinement of algorithms that is not possible
when any of the individual steps are skipped.

1.1 Solution Space
Much research has been conducted in the area of optimized collective op-

erations resulting in a wide variety of different algorithms and technologies.
The solution space is vast; determining which collective algorithms to use in a
given application may depend on multiple factors, including the communication
patterns of the application, the underlying network topology, and the amount
of data being transferred. Hence, one set of collective algorithms is typically
not sufficient for all possible application / run-time environment combinations.
This is evident in the range of literature available on different algorithms for
implementing the MPI collective function semantics.

It is therefore useful to allow applications to select at run-time which algo-
rithms are used from a pool of available choices. Because each communicator
may represent a different underlying network topology, algorithm selection
should be performed on a per-communicator basis. This implies that the MPI
implementation both includes multiple algorithms for the MPI collectives and
provides a selection mechanism for choosing which routines to use at run-time.

1.2 Implementation Difficulties
There are significant barriers to entry for third-party researchers when imple-

menting new collective algorithms. For example, many practical issues arise
when testing new algorithms with a wide variety of MPI applications in a large
number of run-time environments. To both ease testing efforts and to make the
testing environment as uniform as possible, MPI test applications should be able

The Component Architecture of Open MPI 169

to utilize the new algorithms with no source code changes. This will even allow
real world MPI applications to be used for testing purposes; the output and
performance from previous runs (using known correct collective algorithms)
can be compared against the output when using the collective algorithms under
test.

This means that functions implementing new algorithms must use the stan-
dard MPI API function names (e.g., MPI_Barrier). Techniques exist for this
kind of implementation, but they may involve significant learning curves for the
researcher with respect to the underlying MPI implementation: how it builds,
where the collective algorithms are located in the source tree, internal restric-
tions and implementation models for the collective functions, etc.

1.3 A New Approach
To address a number of needs in the MPI research community, Open MPI [5]

has been developed; a new MPI-2 implementation based upon the collected re-
search and prior implementations of FT-MPI [3–4] from the University of Ten-
nessee, LA-MPI [1,7] from Los Alamos National Laboratory, and LAM/MPI
[2, 19] from Indiana University. Open MPI is centered around a lightweight
component architecture that provides a set of component frameworks for real-
izing collective algorithms, point-to-point communication, and other aspects of
MPI implementations.

In this chapter, we focus on the collective algorithm component frame-
work. The “coll” framework provides tools for researchers to easily design,
implement, and experiment with new collective algorithms in the context of
a production-quality MPI. Collective routines are implemented in standalone
components that are recognized by the MPI implementation at run-time. The
learning curve required to create new components is deliberately small to allow
researchers to focus on their algorithms, not the details of the MPI implementa-
tion. The framework also offers other benefits: source and binary distribution of
components, seamless integration of all algorithms at compile and/or run-time,
and fine-grained run-time selection (on a per-communicator basis).

This chapter is therefore not about specific collective algorithms, but rather
about providing a comprehensive framework for researchers to easily design,
implement, and experiment with new collective algorithms. Components con-
taining new algorithms can be distributed to users for additional testing, verifi-
cation, and finally, production usage.

Both MPICH and MPICH2 [8–9] use sets of function pointers (to varying
degrees) on communicators to effect some degree of modularity, but have no
automatic selection or assignment mechanisms, therefore requiring abstraction
violations (the user application has to assign function pointers inside an opaque
MPI communicator) or manual modification of MPICH itself.

170 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

LAM/MPI v7 debuted the first fully-integrated component-based framework
that allowed source and binary distribution of several types of components
(including collective algorithms) while requiring no abstraction violations or
source code changes to the MPI implementation in a production-quality, open-
source MPI implementation. Open MPI evolves these abstractions by refining
the concepts introduced in LAM/MPI v7, essentially creating a second gener-
ation set of component frameworks for MPI implementations called the MPI
Component Architecture (MCA) [5, 23]. This chapter presents Open MPI’s
MCA collective component framework design.

The rest of this chapter is organized as follows. Section 2 discusses the
current state of the art with regards to implementing third-party collective algo-
rithms within an MPI framework. Section 3 describes Open MPI’s component
model for collective algorithms, and explores different possibilities for third-
party implementations. Section 4 provides overviews of two collective modules
that are included in the Open MPI software distribution. Finally, Sections 5, and
6 discuss run-time performance, final conclusions, and future work directions.

2. Adding Collective Algorithms to an MPI
Implementation

Third-parties implementing new collective functions can encounter both
technical and logistical difficulties, even in MPI implementations that encapsu-
late collective function pointers in centralized locations. Not only is it desirable
for MPI applications to invoke new collective routines through the standard MPI
API, there must be a relatively straightforward mechanism for making the new
routines available to other users (download, compile, install, compile / link
against user applications, etc.).

2.1 Common Interface Approaches

Common approaches to developing new collective routines include: using
the MPI profiling layer, editing an existing MPI implementation, creating a
new MPI implementation, and using alternate function names. Each of these
scenarios have benefits and drawbacks, but all require the collective algorithm
author to implement at least some level of infrastructure to be able to invoke
their functions.

Use the MPI Profiling Layer. The MPI profiling layer was designed for ex-
actly this purpose: allowing third-party libraries to insert arbitrary functionality
in an MPI implementation. This can be done without access to the source code
for either the MPI implementation or the MPI application.

This approach has the obvious advantage that any MPI application will auto-
matically use the new collective routines without modifications. Although the

The Component Architecture of Open MPI 171

MPI application will need to be relinked against the new library, no source code
changes should be necessary. A non-obvious disadvantage is that since the pro-
filing layer uses linker semantics to overload functions, only one version of an
overloaded function is possible. For example, MPI_BARRIER cannot be over-
loaded with both a new collective routine and a run-time debugging/profiling
interface.

Edit an Existing MPI Implementation. This method involves editing an
MPI implementation to either include new collective routines in addition to the
implementation’s existing routines [21–22], or outright replacing the imple-
mentation’s collective routines with new versions [10]. This can only be used
with MPI implementations where the source code is available and the license
allows such modifications.

Similar to the profiling approach, this method allows unmodified MPI appli-
cations to utilize new functionality. This is perhaps the easiest method for MPI
applications because the API is the same and the new routines are in the MPI
implementation itself.

However, the learning curve to add or replace functionality in the MPI im-
plementation may be quite large. Additionally, editing the underlying MPI
effectively creates a “fork” in the implementation’s development path. This
may make the code difficult to maintain and upgrade.

Create a New MPI Implementation. Entirely new MPI implementations
have been created simply to design, test, and implement new MPI collective
algorithms [11–12]. The advantage to this approach is complete control over
the entire MPI implementation. This may be desirable for situations where
the collective routines are radically different than current MPI implementa-
tions allow. For example, PAC-X MPI was created to enable communications
in metacomputing environments, requiring alternate collective algorithms for
efficiency.

The overhead with this approach is enormous. Writing enough of an MPI
implementation such that a simple MPI program that only invokes MPI_INIT,
MPI_COMM_RANK, MPI_COMM_SIZE, and MPI_FINALIZE is a monumen-
tal task. The time necessary to create an entire MPI framework before actually
being able to work on collective algorithms can be prohibitively large.

Use Alternate Function Names. Perhaps the simplest approach from the
algorithm implementor’s perspective is to use function names other than the
ones mandated by the MPI standard. For example, provide an alternate barrier
implementation in the function New_Barrier instead of MPI_Barrier.

Difficulties arise in testing because MPI applications need to be modified to
call the alternate functions. This can be as simple as preprocessor macros in a

172 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

standardized header file, or may entail manually modifying all invocation points
in the application. Requiring source code modification necessarily means that
precompiled, binary-only MPI applications will not be able to utilize the new
functionality.

2.2 A Component-Based Approach

We propose an open, component-based framework for the implementation
of collective algorithms that will solve many of the technical and logistical
issues faced by third-party collective algorithm researchers. In this frame-
work, a collective component is comprised of a set of top-level collective rou-
tines. A collective routine implements one MPI collective function (such as
MPI_BARRIER, MPI_BCAST, etc.). The framework also includes built-in
mechanisms for configuration, compilation, installation, and source and binary
distributions of components.

The collective component framework was designed and implemented with
the following goals:

Do not require modifying Open MPI source code to import new collective
algorithms.

Allow new collectives to be imported into the MPI implementation at
compile- and run-time.

Provide easy-to-understand interface and implementation models for col-
lective routines that do not require detailed internal knowledge of the MPI
implementation.

Provide minimal overhead before invoking collective routines to maxi-
mize run-time performance.

Allow (but not require) collective routines to be layered upon MPI point-
to-point routines.

Allow collective routines to exploit back-end hardware and network
topologies.

Allow collective components to be layered upon other collective compo-
nents.

Facilitate both source and binary distribution of collective components.

Enable MPI applications to utilize the new collective components without
recompiling / relinking.

Allow multiple collective components to exist within a single MPI pro-
cess.

The Component Architecture of Open MPI 173

Provide a fine-grained, run-time, user-controlled component selection
mechanism.

There are no current plans to allow experimentation with collective algo-
rithms that are not specified by MPI.

3. Collective Components
Open MPI is based upon a lightweight component architecture, including a

component framework for MPI collective algorithms named “coll.” The coll
component interface was designed to satisfy the goals listed in Section 2.2.
coll components can be loaded and selected at compile-time or run-time. For
example, multiple coll components are included in the standard Open MPI
distribution, but third-party components can also be added at any time.

3.1 Design Overview
The Open MPI component framework manages all coll components that are

available at run-time. This management code is typically referred to as the
Open MPI coll framework in the discussion below.

Simply put, a coll components is essentially a list of top-level function point-
ers that the Open MPI infrastructure selectively invokes upon demand. When
paired with a communicator, a component becomes a module [20]. Top-level
MPI collective functions have been reduced to thin wrappers that perform error
checking before invoking back-end coll module implementation functions. One
coll module is assigned to each communicator; this module is used to imple-
ment all MPI collectives that are invoked on that communicator. For example,
MPI_BCAST simply checks the passed parameters for errors and then invokes
the back-end broadcast function on its assigned coll module.

3.2 Implementation Models

Components are free to implement the standardized MPI semantics in any
way that they choose. Most, however, use one or more of the following models:
layered over point-to-point, alternate communication channels, or layered over
another coll components.

Layered over Point-to-Point. A simple implementation model is to utilize
MPI point-to-point functions to send data between processes. For example,
using MPI_SEND and MPI_RECV to exchange data is both natural and easy
to understand, freeing the coll component author to concentrate on the compo-
nents’ algorithms and remain independent of how the underlying communica-
tion occurs. This model has been used extensively by MPI implementations [8,
19] and third-party collective algorithm researchers [13–14].

174 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 1. Four processes in MPI_COMM_WORLD are distributed across two nodes. Three sub-
communicators (vertical and horizontal) each contain the two processes local to their respective
nodes. One “bridge” communicator (horizontal) contains a representative process from each
node.

Alternate Communication Channels. Recently, researchers have been ex-
ploring the possibility of avoiding MPI point-to-point functionality and instead
using alternate communication channels for collective communications. Some
network interfaces contain native primitives for collective operations and/or
streamlined one-sided operations which can lead to significant performance
gains as compared to using traditional point-to-point methods. Examples of al-
ternate communication channels that at least partially support collective opera-
tions include (but are not limited to): shared memory [16], UDP multicast [11],
Myrinet [24], and Infiniband [15].

Hierarchical coll Components. The coll framework was carefully designed
such that coll components can be re-used at run-time in two ways. First, the
coll component “basic,” as its name implies, is a basic implementation of all
of the MPI collectives. It can be used with any communicator and topology.
The purpose of this component is to provide a baseline implementation for all
MPI collective operations, allowing other components to use its routines as
necessary. For example, a component that only provides an optimized scatter
algorithm implementation can complete itself by using the methods from the
basic component (or other components) for all other collective routines. This
allows the optimized scatter component to be used in any MPI program even
though it only implements a small number of new/optimized routines.

A second, more complex model involves using a hierarchy of coll modules to
implement a single, top-level MPI collective. This is useful when a collective is
invoked on a communicator that spans multiple types of networks. For example,

The Component Architecture of Open MPI 175

Figure 2. Five phases in the life of a coll component. The component is selected and initialized
when a communicator is created. It is used and/or checkpointed during the run, and finalized
when the communicator is destroyed.

Figure 1 shows two SMPs, each running two MPI processes. A single MPI
communicator contains all four processes. The top-level communicator’s coll
module creates three sub-communicators: one for each SMP (containing the
two processes on each node), and a third “bridge” communicator connecting
one representative process from each node.

Note that each sub-communicator will have its own coll module. This hier-
archical arrangement of communicators allows each network to utilize its own
optimized coll component, resulting in an efficient movement of data across
each medium. This model will be explained in more detail in Section 4, where
the smp coll component is discussed as an example implementation.

3.3 Component / Module Life Cycle
There are five phases in a coll component’s life cycle: selection, initialization,

checkpoint / restart, normal operation, and finalization. Figure 2 shows these
phases and the corresponding MPI functions that trigger them. Note that a
component may be involved in multiple life cycles simultaneously (i.e., several
modules of the same component may exist in a single process); coll components
have a one-to-many relationship with communicators.

Selection. As each communicator is created (including MPI_COMM_SELF
and MPI_COMM_WORLD), a coll component is selected for it from all avail-
able components. Specifically, the Open MPI coll framework queries each
available coll component to determine if it is available to be used with the
newly-created communicator. The queried component analyzes factors such as

176 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

the current run-time environment and topology of the processes in the commu-
nicator. If the component determines that its algorithms are a good match for
the target communicator, it returns priority value (from 0 to 100) intended as a
relative indicator of the component’s expected performance. The priority value
is relative and changable at run-time. Hence, components typically provide de-
fault priority values that is a guesstimate (e.g., MagPIe-based algorithms across
WANs should return a high priority – it doesn’t matter what the priority is, as
long as it is higher than the rest). Users can change default priorities to force
selection of specific components based on their environment. The component
returning the highest priority is selected; all MPI collective functions invoked
on that communicator will use the selected module.

Initialization. Once a coll module is selected for a given communicator, it
is initialized. Specifically, the component’s initialization function is invoked,
passing the target communicator as an argument. The initialization function
performs any one-time setup required by the module, and returns a module
that contains any local state required to perform collectives on the target com-
municator. By definition, a communicator’s member processes and ordering
are static, allowing a module’s initialization routine to pre-compute any data
structures that will later be used during collective routines. This design em-
phasizes the potential run-time optimizations that can be obtained by shifting
as much overhead calculations and coordination to the one-time initialization
function as possible. This can reduce the amount of computational overhead in
the run-time of collective routines.

The module is associated with the target communicator by caching its local
state (such as the pre-computation results) on the communicator itself. All sub-
sequent phases in the module’s life cycle are invoked relative to a communicator
for which it was selected; the communicator is passed as an argument to all invo-
cation functions. This allows the module to retrieve its communicator-specific
pre-computation data when a collective function is invoked.

Once a component has been initialized, it returns the module – including
a list of function pointers for its algorithms – which is then assigned to the
communicator. These functions are later invoked by the coll framework during
the “normal usage” phase in the module’s life cycle whenever a top-level MPI
collective function is invoked. The module is then ready to be checkpointed or
used for collective operations.

Checkpoint / Restart. Open MPI includes the capability for parallel MPI ap-
plications to be transparently checkpointed and restarted. In order for a parallel
MPI application to be checkpointed, all its modules must include checkpoint/
restart functionality. Much of this work is usually the responsibility of the
point-to-point modules: they must ensure that “in flight” messages will not be

The Component Architecture of Open MPI 177

lost upon restart. This is typically effected either by draining the network or
utilizing acknowledgment / retransmission schemes.

coll modules that are layered on top of MPI point-to-point functionality there-
fore require no additional work to support checkpoint / restart; all the necessary
work is already performed by the point-to-point modules. coll modules that
use their own communication channels, however, will typically need to include
additional code to support checkpoint / restart functionality. Such modules
can provide hook functions that the Open MPI framework will invoke during
checkpoints and restarts to perform any required cleanup and re-initialization,
respectively.

It is not an error if a module does not include the functionality required
for checkpointing and restarting itself; support for checkpoint/restart in a coll
module is optional. Currently, the determiniation of whether a process can
checkpoint occurs during MPI_INIT: a process is checkpointable only if all the
components that may be used in the process support checkpointing (regardless
of whether they are selected).

Normal Usage. After a coll module has been initialized with a commu-
nicator, that module’s collective routines will be invoked whenever an MPI
collective function is invoked on the communicator. Note that since the type of
communicator is known at selection and initialization time (i.e., intra- or inter-
communicator), it is the module’s responsibility to set itself up so that intra- or
intercommunicator algorithms are invoked as appropriate.

For example, when the MPI_Bcast C function is invoked on MPI_COMM_-
WORLD, it checks all of the parameters that are passed into it. It then invokes
the the module’s broadcast function pointer. The module’s broadcast function
pointer can either be specifically for intracommunicators or dispatch to an in-
tracommunicator algorithm when it detects the type of MPI_COMM_WORLD.
This model allows for a natural separation of algorithms and code since the
algorithms used for intracommunicators are, by definition, different than the
algorithms used for intercommunicators.

Finalization. The final phase in a coll module’s life cycle on a communicator
occurs when the communicator is destroyed. The module’s finalization method
is responsible for cleaning up all resources associated with the communicator
that is being destroyed.

3.4 Component and Module Interfaces
The coll component interface is relatively small; it contains data required

for all Open MPI MCA modules such as references to the framework that
the component belongs to, the name and version number of the component,

178 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 3. Pseudocode for the coll component interface.

and once-per-process initialization (“open”) and finalization (“close”) actions.
Finally, two actions are defined specifically for coll components:

One-time initialization. This method is invoked during MPI_INIT to ask
certain threading characteristics about the component, and is mainly used
to determine the final threading level that will be used during the process
(MPI_THREAD_SINGLE through MPI_THREAD_MULTIPLE).

Per-communicator query. The coll framework invokes this method on
each component, effectively asking the component if it wants to be con-
sidered for selection. If it does, the component will return a module.

Pseudocode for the component interface is shown in Figure 3.
The module interface is divided into several categories of actions (shown in

Figure 4):

Initialization and finalization. If a module is selected, its initialization
method is invoked, allowing the module to complete any setup or pre-
compute results that are utilized during the module’s “normal usage”
life cycle phase. All modules have their finalize method invoked when
they are no longer used (which may be immediately if a module is not
selected).

Checkpoint / restart functionality. As described in [18], the check-
point/restart functionality in LAM/MPI (and carried forward to Open

The Component Architecture of Open MPI 179

Figure 4. Pseudocode for the coll module interface. Module-specific state is cached on the
communicator and is therefore passed in to every module method.

MPI) consists of three distinct phases: checkpoint, continue, and restart.
Methods are included to support each of these actions; their functionality
is described further in [18].

MPI collective functions. Modules contain a method for each MPI collec-
tive function (e.g., MPI_BCAST, MPI_BARRIER, etc.). Their function
signatures are quite similar to their MPI counterparts, but some of the
functions and arguments have been streamlined by the coll framework.
For example, some components can treat a zero-byte broadcast as a no-op,
and the coll framework will not invoke the module in such situations.

4. Example Components
basic and smp are two of the coll components included in Open MPI. These

components serve both as reference algorithms as well as examples of two
different implementation models.

4.1 The basic Component
The basic component contains a full set of intra- and intercommunicator

collectives. The intracommunicator algorithms are quite mature; they have been

180 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

in LAM/MPI production code for years. The intercommunicator algorithms are
new, but are essentially variations of their intracommunicator counterparts.

Prior generations of LAM/MPI—including the collective algorithms that the
basic component is founded on—were based on a monolithic architecture. This
made it a natural choice for not only influencing the design of the coll component
interface, but also as a first coll component implementation. The successful port
of the legacy LAM/MPI collective algorithms to the new framework (originally
in LAM/MPI 7.x, and later to Open MPI) served as a validation of the overall
coll design.

Although relatively naive, the basic routines can be used on any communica-
tor (regardless of underlying topology), switching between and
algorithms depending on the number of processes in the communicator. All of
the basic algorithms essentially use MPI point-to-point functions for moving
data between MPI processes. For example, in MPI_BCAST’s logarithmic im-
plementation, a traditional binomial tree is used: parent processes send data
with MPI_SEND while child processes block in MPI_RECV.

4.2 The smp Component

The smp component was also instrumental in shaping the design of the coll
framework. Based on the algorithms from the MagPIe project [13–14], the smp
algorithms attempt to maximize bandwidth conservation across multiple levels
of network latency. MagPIe focused on uniprocessors communicating across
a WAN; the smp component is oriented to SMPs communicating on a LAN.
The end effect is the same: two levels of network latency that can be exploited
at run-time. Segmenting the communicator into groups of local process peers
and electing representatives from each group to communicate with other groups
provides a natural segregation of local and global communications.

Similar to the basic component, the smp component uses point-to-point
communication to pass messages. Standard MPI functions are used to create
sub-communicators and translate rank identifications between them. A direct
implication of this model is that the coll framework must be able to handle
recursive communicator creation and destruction. During the construction of
a communicator, the initialization of a coll module may cause the creation of
another communicator. This may, in turn, trigger the creation of yet another
communicator (and so on).

For example, in the MagPIe broadcast algorithm, the root broadcasts the
data to the set of representatives from the other process groups. Each repre-
sentative (including the root) then broadcasts to the members of its local group
(see Figure 5). During the initialization phase of the smp module, the three
sub-communicators shown in Figure 5 are created: two containing local-only
processes, and one “bridge” communicator between processes 0 and 3. This

The Component Architecture of Open MPI 181

Figure 5. MagPIe algorithm for broadcast from process 0. Process 0 sends to its peer on the
remote node (process 3). Each then do a local broadcast to the remaining processes on their
nodes (processes 1 and 2, and processes 4 and 5, respectively).

Figure 6. Pseudocode broadcast implementation using sub-communicators (error handling
ignored for this example).

allows the reducing the MagPIe broadcast algorithm implementation to the
pseudocode shown in Figure 6.

Note that there are two calls to MPI_BCAST. These broadcasts use whichever
module was selected when the sub-communicators were created. Depending
on the number of processes and topology involved, the broadcasts may be
optimized according to however the selected coll component is implemented.

5. Performance
It is critical that the coll framework does not contribute additional overhead to

collective algorithm performance. Measuring this is straightforward: compare
the performance of Open MPI’s collective functions against the prior generation
of LAM/MPI (specifically, v6.5.9) that both provided the algorithms used in
the basic component and was based on an integrated, monolithic model.

The collective algorithm implementations used in LAM/MPI 6.5, although
somewhat naive, had well-understood behavior characteristics. Its main op-

182 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

Figure 7. Wall-clock execution times for MPI_BCAST.

timization technique is to switch between and when enough
processes are involved in the collective. These collective algorithms were ported
to the component architecture in Open MPI (the basic component, as described
in Section 4.1). Measuring the performance of the same algorithms in two dif-
ferent architectures allows the comparison of overhead between the two.

A pair of dual-processor 2.0Ghz Intel Xeon nodes connected with Gigabit
Ethernet and a dedicated switch was used for testing. Each node was running
Red Hat 9 with Linux kernel 2.4.20 SMP and contained 2GB of RAM. The
Pallas Benchmarks v2.2.1 were used to measure the wall-clock execution time
of several MPI collectives in LAM/MPI and Open MPI.

The performance of MPI_BCAST, and MPI_ALLTOALL is shown in Fig-
ures 7 and 8, respectively. These graphs show that the performance of the col-
lective algorithms in the Open MPI are on par with their peers in the LAM/MPI
6.5 series. Similarly, the performance of MPI_BARRIER is nearly identical
between the two; wall-clock execution time for two processes was for
LAM/MPI, and for Open MPI.

6. Conclusions
Effective, easy-to-use tools for enabling research in high performance com-

puting are critical to meet the ever-growing demands of scientific applications.

The Component Architecture of Open MPI 183

Figure 8. Wall-clock execution times for MPI_ALLTOALL.

The component framework of Open MPI allows third-party researchers to de-
velop and test new algorithms within an MPI implementation without the large
time investment required to first become an MPI implementor. This allows
quicker development of algorithms as well as a robust vehicle to allow users
access to cutting-edge research.

Future work includes completing and releasing Open MPI (expected Novem-
ber 2004), writing coll components to exploit high performance in a new en-
vironments, tighter integration of MPI topology-based communicators with
collective algorithms, and continued development and integration of other com-
ponent types within the Open MPI implementation (particularly as they relate
to collective algorithms).

References

[1]

[2]

[3]

R.T. Aulwes, D.J. Daniel, N.N. Desai, R.L. Graham, L.D. Risinger, M.W. Sukalski, M.A.
Taylor, and T.S. Woodall. Architecture of LA-MPI, a network-fault-tolerant MPI. In
Proceedings of IPDPS’04, April 2004.

G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster Environment for MPI. In
Proceedings of Supercomputing Symposium, pages 379–386, 1994.

G.E. Fagg, A. Bukovsky, and J.J. Dongarra. HARNESS and fault tolerant MPI. Parallel
Computing, 27:1479–1496, 2001.

184 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

G.E. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca, A. Bukovski, and J.J. Dongarra.
Fault Tolerant Communication Library and Applications for High Perofrmance. In Los
Alamos Computer Science Institute Symposium, Santa Fe, October 27-29 2003.

E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J. Dongarra, J.M. Squyres, V. Sahay, P.
Kambadur, B. Barrett, A. Lumsdaine, R.H. Castain, D.J. Daniel, R.L. Graham, and T.S.
Woodall. Open MPI: Goals, Concept, and Design of a Next Generation MPI Implemen-
tation. In Proceedings, Euro PVM/MPI, Budapest, Hungary, September 2004.

A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, W. Saphir, T. Skjellum,
and M. Snir. MPI-2: Extending the Message-Passing Interface. In Proceedings of Euro-
Par’96, LNCS, 1123:128–135, Springer, 1996.

R.L. Graham, S.E. Choi, D.J. Daniel, N.N. Desai, R.G. Minnich, C.E. Rasmussen, L.D.
Risinger, and M.W. Sukalksi. A Network-failure-tolerant Message-passing System for
Terascale Clusters. International Journal of Parallel Programming, 31(4):285–303, Au-
gust 2003.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-performance, Portable Implementa-
tion of the MPI Message Passing Interface Standard. Parallel Computing, 22(6):789–828,
September 1996.

W.D. Gropp and E. Lusk. User’s Guide for mpich, a Portable Implementation of MPI.
Mathematics and Computer Science Division, Argonne National Laboratory, ANL-96/6,
1996.

N. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bresnahan. Exploiting
Hierarchy in Parallel Computer Networks to Optimize Collective Operation Performance.
In Proceedings of IPDPS’00, pages 377–84, May 2000.

A. Karwande, X. Yuan, and D. Lowenthal. CCMPI: A Compiled Communication Ca-
pable MPI Prototype for Ethernet Switched Clusters. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, San Diego, June 2003.

R. Keller, E. Gabriel, B. Krammer, M.S. Müller, and M.M. Resch. Towards Efficient
Execution of MPI Applications on the Grid: Porting and Optimization Issues. Journal of
Grid Computing, 1(2): 133–149, 2003.

T. Kielmann, H.E. Bal, and S. Gorlatch. Bandwidth-efficient Collective Communication
for Clustered Wide Area Systems. In Proceedings of IPDPS’00, pages 492–499, May
2000.

T. Kielmann, R.F.H. Hofman, H.E. Bal, A. Plaat, and R.A.F. Bhoedjang. MagPIe: MPI’s
Collective Communication Operations for Clustered Wide Area Systems. ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP ’99), pages 131–
140, May 1999.

S. P. Kini, J. Liu, J. Wu, P. Wyckoff, and D. K. Panda. Fast and Scalable Barrier Using
RDMA and Multicast Mechanisms for InfiniBand-Based Cluster. In Proceedings of Euro
PVM/MPI, LNCS, 2840, Springer, 2003.

J.M. Mellor-Crummey and M.L. Scott. Algorithms for Scalable Synchronization on
Shared-memory Multiprocessors. ACM Transactions on Computer Systems, 9(l):21–65,
1991.

Message Passing Interface Forum. MPI: A Message Passing Interface. In Proc. of Super-
computing ’93, pages 878–883. IEEE Computer Society Press, November 1993.

S. Sankaran, J.M. Squyres, B. Barrett, A. Lumsdaine, J. Duell, P. Hargrove, and E. Ro-
man. The LAM/MPI Checkpoint/Restart Framework: System-initiated Checkpointing. In
Proceedings of LACSI Symposium, Sante Fe, October 2003.

The Component Architecture of Open MPI 185

[19]

[20]

[21]

[22]

[23]

[24]

J.M. Squyres and A. Lumsdaine. A Component Architecture for LAM/MPI. In Proceed-
ings of Euro PVM/MPI, LNCS, 2840, Springer, 2003.

C. Szyperski, D. Druntz, and S. Murer. Component Software: Beyond Object-Oriented
Programming. Addison Wesley, second edition, 2002.

R. Thakur and W. Gropp. Improving the Performance of MPI Collective Communi-
cation on Switched Networks. Technical report ANL/MCS-P1007-1102, Mathemat-
ics and Computer Science Division, Argonne National Laboratory, November 2002.
ftp://info.mcs.anl.gov/pub/tech_reports/reports/P1007.pdf.

R. Thakur and W. Gropp. Improving the Performance of Collective Operations in MPICH.
In Proceedings of Euro PVM/MPI, LNCS, 2840, Springer, 2003.

T.S. Woodall, R.L. Graham, R.H. Castain, D.J. Daniel, M.W. Sukalski, G.E. Fagg,
E. Gabriel, G. Bosilca, T. Angskun, J.J. Dongarra, J.M. Squyres, V. Sahay, P. Kambadur,
B. Barrett, and A. Lumsdaine. TEG: A High-performance, Scalable, Multi-network Point-
to-point Communications Methodology. In Proceedings of Euro PVM/MPI, Budapest,
Hungary, September 2004.

Q. Zhang. MPI Collective Operations Over Myrinet. Master’s thesis, The University of
British Columbia, Department of Computer Science, June 2002.

Index

active objects, 97
adaptation, 57
adaptive applications, 19
adaptive Grid, 39
adaptive Grid service, 39
advance reservations, 109
Afzal Ali, 109
Aldinucci Marco, 19
Alt Martin, 157
André Françoise, 145
automatic programming, 79

57
Bangalore Purushotham, 79
Baude Françoise, 97
Bubak Marian, 57
Buisson Jérémy, 145

Campa Sonia, 19
Caromel Denis, 97
code generators, 79
code mobility, 157
Cohen Jeremy, 109
collective algorithms, 167
component architecture, 167
component programming model, 109
Coppola Massimo, 19
CoreGRID, viii

Danelutto Marco, x, 19
Darlington John, 109
deployment, 97
domain specific modeling, 79
Dünnweber Jan, 157
dynamic configuration, 97
dynamic self-adaptation, 145

e-Science, 109

Fang Liang, 3
framework, 57
Furmento Nathalie, 109

Gannon Dennis, 3, x
generic Grid platform, 39
Getov Vladimir, x–xi, 39, 125
global namespace, 125

Globus toolkit, 79, 157
Gorlatch Sergei, 157
Gray Jeff, 79
Grid engine, 125
Grid middleware, 109
Grid platform, 125
Grid services, 57, 157
group communications, 97
Gulamali Murtaza, 109

Hernández Francisco, 79
hierarchical components, 97
high performance, 167
high performance computing, 19

Isaiadis Stavros, 39

Java CoG kit, 79

Kandaswamy Gopi, 3
Kielmann Thilo, xi
Krishnan Sriram, 3

Laforenza Domenico, x, 19
legacy applications, 3
legacy software, 57
lightweight Grid platform, 39
lightweight platform, 125
Long Bruce, 125
Lumsdaine Andrew, 167

Mayer Anthony, 109
McGough Steve, 109
meta data, 109
migration, 57
Morel Matthieu, 97
MPI implementation, 167
Müller Jens, 157

Newhouse Steven, 109

OGSA, 109, 125

parallel computing, 167
parallelism, 145
Pazat Jean-Louis, 145
performance, 109

188 COMPONENT MODELS AND SYSTEMS FOR GRID APPLICATIONS

portals, 3
Priol Thierry, viii, x
programming models, 19
Puppin Diego, 19

reconfiguration, 19
reflexive programming, 145
Reilly Jeff, 79

Scarponi Luca, 19
scheduling, 109
Slominski Alexander, 3
software component architectures, 3
software engineering, 79
Squyres Jeffrey M., 167
structured parallel programming, 19

Thiyagalingam Jeyarajan, 39

Vanneschi Marco, 19
virtual organization, 125
visual authoring tools, 79

Web services, 3, 57
Wegiel Michal, 57
workflows, 79
WSRF, 157

XCAT3, 3

Young Laurie, 109

Zoccolo Corrado, 19

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

